Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43174
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾萬年(Wang-Nian Tzeng)
dc.contributor.authorChun-I Chiangen
dc.contributor.author江俊億zh_TW
dc.date.accessioned2021-06-15T01:40:50Z-
dc.date.available2009-07-16
dc.date.copyright2009-07-16
dc.date.issued2009
dc.date.submitted2009-07-14
dc.identifier.citationAdams LA (1940) Some characteristic otoliths of American Ostariophysi. J Morphol 66: 497-527.
Arai N, Sakamoto W, Maeda K (1995) Analysis of trace elements in otoliths of red sea bream Pagrus major. Fish Sci 61: 43-47.
Arai N, Sakamoto W, Maeda K (1996) Correlation between ambient seawater temperature and strontium-calcium concentration ratios in otolith of red sea bream Pagrus major. Fish Sci 62: 652-653.
Arai T, Otake T, Tsukamoto K (1997) Drastic changes in otolith microstructure and microchemistry accompanying the onset of metamorphosis in the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 161: 17-22.
Arai T, Limbong D, Otake T, Tsukamoto K (1999) Metamorphosis and inshore migration of tropical eels Anguilla spp. In the Indo-Pacific. Mar Ecol Prog Ser 182: 283-293.
Arai T, Otake T, Tsukamoto K (2000) Timing of metamorphosis and larval segregation ot the Atlantic eels Anguilla rostrata and A. anguilla, as revealed by otolith microstructure and microchemistry. Mar Biol 137: 39-45.
Arai T, Marui M, Miller MJ, Tsukamoto K (2002) Growth history and inshore migration of the tropical eel, Anguilla marmorata, in the Pacific. Mar Biol 140: 309-316.
Ashford JR, Arkhipkin AI, Jones CM (2007) Otolith chemistry reflects frontal systems in the Antarctic Circumpolar Current. Mar Ecol Prog Ser 351: 249-260.

Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64: 1705-1714.
Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779-786.
Brown R, Severin KP (1999) Elemental distribution within polymorphic inconnu (Stenodus leucichthys) otoliths is affected by crystal structure. Can J Fish Aquat Sci 56: 1898-1903.
Campana SE (1999) Chemistry and composition of fish otolith: pathways, mechanisms and application. Mar Ecol Prog Ser 188: 263-297.
Campana SE (2004) Photographic atlas of fish otolith of the Northwest Atlantic Ocean. NRC Research Press, Ottawa, Ontario. 284pp.
Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 41: 1014-1032.
Campana SE, Casselman JM (1993) Stock discrimination using otolith shape analysis. Can J Fish Aqust Sci 50: 1062-1083.
Campana SE, Fowler AJ, Jones CM (1994) Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Can J Fish Aquat Sci 51(9): 1942-1950.
Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H (2004) Effects of sex, stock and environment on the shape of Atlantic cod (Gadus morhua) otoliths. Can J Fish Aquat Sci 61: 158-167.
Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 124: 441-463.
Castle DHJ, Williamson GR (1974) On the validity of the freshwater eel species, Anguilla ancestralis Ege, from Celebes. Copeia 1974(2): 569-570.
Chang CW, Lin SH, Iizuka Y, Tzeng WN (2004) Relationship between Sr:Ca ratios in otoliths of grey mullet Mugil cephalus and ambient salinity: validation, mechanisms, and applications. Zool Stud 43(1): 74-85.
Cheng PW, Tzeng WN (1996) Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 131: 87-96.
Chittaro PH, Hogan JD, Gagnon J, Fryer BJ, Sale PF (2006) In situ experiment of ontogenetic variability in the otolith chemistry of Stegastes partitus. Mar Biol 149:1227-1235.
Correia AT, Antunes C, Isidro EJ, Coimbra J (2003) Changes in otolith microstructure and microchemistry during larval development of the European conger eel (Conger conger). Mar Biol 142: 777-789.
Correia AT, Able KW, Antunes C, Coimbra J (2004) Early life history of the American conger eel (Conger oceanicus) as revealed by otolith microstructure and microchemistry of metamorphosing leptocephali. Mar Biol 145: 477-488.
de Jesus EG, Inui Y, Hirano T (1990) Cortisol enhances the stimulating action of thyroid hormones on dorsal fin-ray resorption of flounder in vitro. Gen Comp Endocrinol 79: 167-173.
de Jesus EG, Hirano T, Inui Y (1991) Changes in cortisol and thyroid hormone concentrations during early development and metamorphosing in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 82: 369-376.
de Jesus EG, Toledo JD, Simpas MS (1998) Thyroid hormones promote early metamorphosis in grouper (Epinephelus coioides) larvae. Gen Comp Endocrinol 112: 10-16.
de Pontual H, Lagarè re F, Amara R, Bohn M, Ogor A (2003) Influence of ontogenetic and environmental changes in the otolith microchemistry of juvenile sole (Solea solea). J Sea Res 50: 199-211.
Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2 : 105-113.
Dekker W (2003) Worldwide decline of eel resources necessitates immediate action. Fisheries 28: 28-30.
Dove SG, Gillanders BM, Kingsford MJ (1996) An investigation of chronological differences in the deposition of trace metals in the otoliths of two temperature reef fishes. J Exp Mar Biol Ecol 205: 15-33.
Edmonds JS, Lenanton RCJ, Caputi N, Morita M (1992) Trace elements in the otoliths of yellow-eye mullet (Aldrichetta forsteri) as an aid to stock identification. Fish Res 13: 39-51.
Elsdon TS, Gillanders BM (2003) Relationship between water and otoltih elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar Ecol Prog Ser 260:263-272.
Elsdon TS, Gillanders BM (2004) Fish otolith chemistry influenced by exposure to multiple environmental variables. J Exp Mar Biol Ecol 313: 269-284.
Fodrie FJ, Herzka SZ (2008) Tracking juvenile fish movement and nursery contribution within arid coastal embayments via otolith microchemistry. Mar Ecol Prog Ser 361: 253-265.
Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995) Experimental composition of otoliths using laser ablation ICPMS. Can J Fish Aqust Sci 52: 1431-1441
Gauldie RW (1986) Vaterite otoliths from chinook salmon (Oncorhynchus tshawytscha). NZ J Mar Freshw Res 20: 209-217.
Gauldie RW, Sharma SK, Volk E (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol A 118: 753-757.
Gillanders BM (2002) Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar Ecol Porg Ser 240: 215-223.
Gillanders BM, Kingsford MJ (1996) Element in otolith may elucidate the contribution of estuarine recruitment to sustaining coastal reef population of a temperate reef fish. Mar Ecol Porg Ser 141: 13-20.
Gillanders BM, Kingsford MJ (2000) Elemental fingerprints of otoliths of fish may distinguish estuarine ‘nursery’ habitats. Mar Ecol Prog Ser 201: 273-286.
Han YS, Tzeng WN (2007) Sex-dependent habitat use by the Japanese eel Anguilla japonica in Taiwan. Mar Ecol Prog Ser 338: 193-198.
Han YS, Tzeng WN, Huang YS, Liao IC (2001) Silvering in the eel: changes in morphology, body fat content, and gonadal development. J Taiwan Fish Res 9(1&2): 119-127.
Hishida T, Nakano E (1954) Respiratory metabolism during fish development. Embryologia 2: 67-79.
Irie T (1955) The crystal texture of the otolith of a marine teleost Pseudosciaena. J Fac Fish Anim Husb Hiroshima Univ 1: 1-8.
Jan S (1995) Seasonal variation of current in Taiwan Strait. PhD Thesis, National Taiwan University, ROC.
Javed M (2006) Studies on growth responses of fish during chronic exposures of nickel and manganese. Pakistan J Biol Sci 9(2): 318-322.

Jessop BM, Shiao JC, Iizuka Y, Tzeng WN (2007) Effects of inter-habitat migration on the evaluation of growth rate and habitat residence of American eels Anguilla rostrata. Mar Ecol Prog Ser 342: 255-263.
Johnson MG (1989) Metals in fish scales collected in Lake Openogo, Canada from 1939 to 1979. Trans Am Fish Soc 118: 331-335.
Jones CM, Chen Z (2003) New techniques for sampling larval and juvenile fish otoliths for trace-element analysis with laser-ablation sector-field inductively-coupled plasma mass spectrometry (SF-ICP-MS). In: Browman HI, Berit Skiftesvik A (eds) The big fish bang: Proceedings of the 26th annual larval fish conference, Institute of Marine Research, Norway, pp. 431-443.
Kalish JM (1989) Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J Exp Mar Biol Ecol 132: 151-178
Kalish JM (1990) Use of otolith microchemistry to distinguish progeny of sympatric anadromous and non-anadromous salmonids. Fish Bull 88(4): 657-666.
Kalish JM (1991a) Determination of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of reared rock cod Pseudophycis barbatus. Mar Ecol Prog Ser 74: 137-159.
Kalish JM (1991b) C-13 and O-18 isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75: 191-203.
Kalish JM (1992) Formation of a stress-induced chemical check in fish otolith. J Exp Mar Biol Ecol 162: 265-277.
Krång AS, Rosenqvist G (2006) Effects of manganese on chemically induced food search behaviour of the Norway lobster, Nephrops norvegicus (L.). Aquat Toxicol 78: 284-291.
Kennedy BD, Folt CL, Blum JD, Chamberlain CP (1997) Natural isotope markers in salmon. Nature 387: 766-767.
Klinkhammer GP, Bender ML (1980) The distribution of manganese in the Pacific Ocean. Earth planet Sci Lett 46(3): 361-384.
Lall SP (2002) The minerals, In: Halver JE, Hardy RW (Eds.), Fish Nutrition, 3rd edition. Academic Press Inc., San Diego, pp. 259-308.
Lecomte-Finiger R (1992) The crystalline ultrastructure of otoliths of the eel (A. anguilla). J Fish Biol 40: 181-190.
Lehman N, Joyce GF (1993) Evolution in vitro of an RNA enzyme with altered metal dependence. Nature 361:182-185.
Lenaz D, Hiletic M, Pizzul E, Vanzo S, Adami G (2006) Mineralogy and geochemistry of otoliths in freshwater fish from northern Italy. Eur J Mineral 18: 143-148.
Limburg KE (1995) Otolith strontium traces environmental history of subyearing American shad Alosa sapidissima. Mar Ecol Prog Ser 119: 25-35.
Limburg KE, Landergren P, Westin L, Elfman M, Kristiansson P (2001) Flexible Modes of anadromy in Baltic sea trout: making the most of marginal spawning streams. J Fish Biol 59: 682-695.
Lin YJ, Lozys L, Shiao JC, Iizuka Y, Tzeng WN (2007) Growth differences between naturally recruited and stocked European eel Anguilla anguilla from different habitats in Lithuania. J Fish Biol 71: 1-15.
Lloyd DC, Zacherl DC, Walker sean, Paradis G, Sheehy M, Warner RR (2008) Egg source, temperature and culture seawater affect elemental signatures in Kelletia kelletii larval statoliths. Mar Ecol Prog Ser 353: 115-130.
Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford University Press, NY 315pp.
Maisey JG (1987) Notes on the structure and phylogeny of vertebrate otoliths. Copeia 2: 495-499.
Mann S, Parker SB, Ross MD, Scarnulis AJ, Williams RJP (1983) The ultrastructure of the the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proc R Soc Lond B 218: 415-424.
Marohn L, Prigge E, Zumholz K, Klügel A, Anders H, Hanel R (2009) Dietary effects on multi-element composition of European eel (Anguilla anguilla) otoliths. Mar Boil 156: 927-933.
Martin GB, Thorrold SR (2005) Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar Ecol Prog Ser 293:223-232.
Martin GB, Wuenschel MJ (2006) Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Mar Ecol Prog Ser 324: 229-239.
Marui M, Arai T, Miller MJ, Jellyman DJ, Tsukamoto K (2001) Comparison of early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructure and microchemistry. Mar Ecol Prog Ser 213: 273-284.
Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang Z (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can J Fish Aquat Sci 62: 2609-2619.
Michibata H, Hori R (1979) The accumulation of manganese from the environmental medium by the egg of Oryzias latipes. J Cell Physiol 98: 241-244.
Milker JA, Shanks AL (2004) Evidence for limited larval dispersal in black rockfish (Sebastes melanops): implication for population structure and marine-reserve design. Can J Fish Aquat Sci 617: 1723-1735.

Miller JA, Kent AJR (2009) The determination of maternal run time in juvenile Chinook salmon (Oncorhynchus tshawytscha) based on Sr/Ca and 87Sr/86Sr within otolith cores. Fish Res 95: 373–378.
Miller MB, Thorrold SR, Jones CM (2004) Temperature and salinity effects on strontium incorporation in otoliths of larval spot Leiostomus xanthurus. Can J Fish Aquat Sci 61: 34-42.
Miller MB, Clough AM, Batson JN, Vachet RW (2006) Transition metal binding to cod otolith proteins. J Exp Mar Biol Ecol 329: 135-143.
Morales-Nin B (1986) Chemical composition of the otoliths of the sea bass (Dicentrarchus labrax Linnaeus, 1758)(Pisces, Serranidae). Cybium 10: 115-120.
Morales-Nin B (1987) Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. In: age and growth of fish (Robert C & Gordon EH eds.). The lowa State University Press, 331-343.
Morales-Nin B (2000) Review of the growth regulation processes of otolith daily increment formation. Fish Res 46: 53-67.
Murayama E, Takagi Y, Nagasawa H (2004) Immunohistochemical localization of two otolith matrix proteins in the otolith and inner ear of the rainbow trout, Oncorhynchus mykiss: comparative aspects between the adult inner ear and embryonic otocysts. Histochem Cell Biol 121: 155-166.
Nguyen VT, Satoh S, Haga Y, Fushimi H, Kotani T (2008) Effect of zinc and manganese supplementation in Artemia on growth and vertebral deformity in red sea bream (Pagrus major) larvae. Aquaculture 285: 184-192.
Oliveira AM, Farina M, Ludka IP, Kachar B (1996) Vaterite, calcite and aragonite in the otoliths of three species of piranha. Naturwissen 83: 133-135.
Otake T (1996) Fine structure and function of the alimentary canal in leptocephali of the Japanese eel Anguilla japonica. Fish Sci (Tokyo) 62: 28-34.
Otake T, Nogami K, Maruyama K (1993) Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar Ecol Prog Ser 92: 27-34.
Otake T, Ishii T, Nakahara M, Nakamura R (1994) Drastic changes in otolith strontium :calcium ratios in leptocephali and glass eels of Japanese eel Anguilla japonica. Mar Ecol Prog Ser 112: 189-193.
Otake T, Ishii T, Ishii T, Nakahara M, Nakamura R (1997) Changes in otolith strontium:calcium ratios in metamorphosing Conger myriaster letocephali. Mar Biol 128: 565-572.
Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173: 1124-1127.
Patterson HM, Kingsford MJ, McCulloch MT (2004) The influence of oceanic and lagoonal plume waters on otolith chemistry. Can J Fish Aquat Sci 61: 898-904.
Patterson WP, Smith GR, Lohmann KC (1993) Continental paleothermometry and seasonality using isotopic composition of aragonite otoliths in freshwater fishes. Geophys Monogr 78: 191-202.
Payan P, De Pontual H, Boeuf G (2004) Endolymph chemistry and otolith growth in fish. Comptes Rendus Palevol 3 (6-7): 535-547.
de Pontual H, Lagardere F, Amara R, Bohn M, Ogor A (2003) Influence of ontogenetic and environmental changes in the otolith microchemistry of juvenile sole (Solea Solea). J Sea Res 50: 199-210.
Popper AN, Lu ZM (2000) Structure-function relationships in fish otolith organs. Fish Res 46: 15-25.
Power AM, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56: 447-459.
Power DM, Llewellyn L, Faustino M, Nowell MA, Björnsson BT, Einarsdottir IE, Canario AVM, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol 130C: 447-459.
Preiler E (1984) Glycosaminoglycan breakdown during metamorphosis of larval bonefish (Albula). Mar Biol Lett 5: 241-249.
Preiler E (1986) Towards an explanation of the developmental strategy in leptocephalous larval of marine teleost fishes. Environ Biol Fish 15: 3-13.
Pfeiler E (1997) Effect of Ca2+ on survival and development of metamorphosing bonefish (Albula sp.) leptocephali. Mar Biol 127: 571-578.
Pfeiler E (1998) Acidic glycosaminoglycans in marine teleost larvae: Evidence for a relationship between composition and negative charge density in elopomorph leptocephali. Comp Biochem Physiol 119B: 137-144.
Preiler E (1999) Developmental physiology of elopomorph leptocephali. Comp Biochem Physiol A 123: 113-128.
Radtke RL, Kinzie III RA, Folsom SD (1988) Age at recruitment of Hawaiian freshwater gobies. Environ Biol Fish 23: 205-213.
Rasquin P (1955) Observations on the metamorphosis of the bonefish, Albula vulpes (Linnaeus). J Morph 97: 77-117.
Riley JP, Chester R (1971) Introduction to marine chemistry. Academic Press, New York.
Rooker JR, Zdanowicz VS, Secor DH (2001) Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Mar Biol 139: 35-43.
Rosson AR, Nealson KH (1982) Manganese binding and oxidation by spores of a marine bacillus. J Bacteriol 151: 1027-1034.

Ruttenberg BI, Hamiltion SL, Hickford MJH, Paradis GL and others (2005) Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Mar Ecol Prog Ser 297:273-281.
Sadovy Y, Severin KP (1994) Elemental patterns in red hind (Epinephelus guttatus) otoliths from Bermuda and Puerto Rico reflect growth rate, not temperatue. Can J Fish Aquat Sci 51: 133-141.
Schreiber AM, Specker JL (2000) Metamorphosis in the Summer Flounder (Paralichthys dentatus): thyroidal status influences gill mitochondria-rich cells. Gen Comp Endocrinol 117: 238-250.
Schwarcz HP, Gao Y, Campana S, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55: 1798-1806.
Secor DH, Ohta T, Nakayama K, Tanaka M (1998) Use of otoltih microanalysis to discriminate estuarine migrations of Japanese sea bass Lateolabrax japonicus distributed in Ariake Sea. Fish Sci 64: 740-743.
Shao KT, Chen JP, Wang SC (1997) Biogeography and database of Marine fishes in Taiwan waters. In: Proceedings of the 5th Indo-Pacific Fish Conference, Nouméa, 3-8 November 1997 (Séret B. and Sire JY Eds.). pp, 673-680.
Shen KN, Tzeng WN (2002) Formation of a metamorphosis check in otolith of the amphidromous goby Sicyopterus japonicus. Mar Ecol Prog Ser 228: 205-211.
Shen KN, Lee YC, Tzeng WN (1998) Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zool Stud 37(4): 322-329.
Shiao JC, Hwang PP (2006) Thyroid hormones are necessary for the metamorphosis of tarpon Megalops cyprinoides leptocephali. J Exp Mar Biol Ecol 331: 121-132.
Shiao JC, Ložys L, Iizuka Y; Tzeng WN (2006) Migratory patterns and contribution of stocking to the population of European eel in Lithuanian waters as indicated by otolith Sr:Ca ratios. J Fish Biol 69: 749-769.
Smith DG (1989) Introduction to leptocephali. In: Böhlke EB, editor. Fishes of the Western North Atlantic. Memoir No. I, Part 9, Vol. 2. New Haven, CT: Sears Foundation for Marine Research, 1989: 657-668.
Söllner S, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003) Control of Crystal Size and Lattice Formation by Starmaker in Otolith Biomineralization. Science 203(5643): 282-286.
Stransky C, Baumannb H, Fevolden SE, Harbitz Alf, Høie H, Kjell H, Nedreaas, Salberg AB and Skarstein TH (2008) Separation of Norwegian coastal cod and Northeast Arctic cod by outer otolith shape analysis. Fisheries Research 90: 26-35.
Subash Peter MC, Lock RAC, Wendelar Bonga SE (2000) Evidence for an osmoregulatory role of thyroid hormone in the freshwater Mozambique tilapia Oreochromis mosambicus. Gen Comp Endocrinol 120: 157-167.
Swan SC, Geffen AJ, Morale-Nin B, Gardon JDM, Shimmield T, Sawyer T, Massuti E (2006) Otolith chemistry: an aid to stock separation of Helicolenus dactylopterus (bluemouth) and Merluccius merluccius (European hake) in the Northeast Atlantic and Mediterranean. J Mar Sci 63: 504-513.
Sweeting RM, Beamish RJ, Neville CM (2004) Crystalline otoliths in teleosts: Comparisons between hatchery and wild coho salmon (Oncorhynchus kisutch) in the Strait of Georgia. Rev Fish Biol Fish 14: 361-369.
Tesch RW (1977) The Eel. Biology and Management of Anguillid Eel. London: Chapman & Hall.
Thorrold SR, Campana SE, CM Jones, PK Swart (1997a) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 61: 2909-2919.
Thorrold SR, Jones CM, Campana SE (1997b) Respones of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol Oceanogr 42(1): 102-111.
Tsukamoto K (1992) Discovery of the spawning area for Japanese eel. Nature 356: 789-791.
Tsukamoto K (2006) Spawning of eels near a seamount. Nature 439: 929.
Tsukamoto K, Otake T, Mochioka N, Lee TW, Fricke H, Inagaki T, Aoyama J, Ishikawa S, Kimura S, Miller MJ, Hasumoto H, Oya M, Suzuki Y (2003) Seamounts, new moon and eel spawning: The search for the spawning site of the Japanese eel. Environ Biol Fish 66: 221-229.
Tzeng WN (1990) Relationship between growth rate and age at recruitment of Anguilla japonica elvers in a Taiwan estuary as inferred from otolith growth increments. Mar Biol 107(1): 75-81.
Tzeng WN (1996) Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of Japanese eel Anguilla japonica Temminick and Schlegel. J Exp Mar Biol Ecol 199: 111-122.
Tzeng WN, Tabeta O (1983) First record of the short-finned eel Anguilla bicolor pacifica from Taiwan. Bull Japan Soc Sci Fish 49(1): 27-32.
Tzeng WN, Yu SY (1988) Daily growth increments in otoliths of milkfish, Chanos chanos, larvae. J Fish Biol 32: 495-504.
Tzeng WN, Yu SY (1989) Validation of daily growth increments in otoliths of milkfish larvae by oxytetracycline labeling. Transactions of the American Fis Soci 118: 168-174.
Tzeng WN, Tsai YC (1994) Changes in otolith microchemistry of the Japanese eel, Anguilla japonica. J Fish Biol 45: 1055-1066.
Tzeng WN, Severin KP, Wickström H (1997) Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Mar Ecol Porg Ser 149: 73-81.
Tzeng WN, Lin HR, Wang CH. Xu SN (2000a) Differences in size and growth rates of male and female migrating Japanese eels in Pearl River, China. J Fish Biol 45: 479-492.
Tzeng WN, Shiao JC, Iizuka Y (2002) Use of otolith Sr:Ca ratios to study the riverne migratory behaviors of Japanese eel Anguilla japonica. Mar Ecol Prog Ser 245: 213-221.
Tzeng WN, Severin KP, Wang CH, Wickström H (2005) Elemental composition as a discriminator of life stage and growth habitat of the European eel, Anguilla anguilla. Mar Freshw Res 56: 629-635.
Tzeng WN, Chang CW, Wang CH, Shiao JC, Iizuka Y, Yang YJ, You CF, Ložys L (2007) Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar Ecol Prog Ser 348: 285-295.
Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311: 125-130.
Wang CH, Tzeng WN (1998) Interpretation of geographic variation in size of American eel Anguilla rostrata elvers on the Atlantic coast of North America using their life history and otolith ageing. Mar Ecol Prog Ser 168: 35-43.

Wang CH, Tzeng WN (2000) The timing of metamorphosis and growth rates of American and European eel leptocephali: a mechanism of larval segregative migration. Fish Res 46: 191-205.
Warner RR (2005) Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnol Oceanogr 50(5): 1529-1542.
Watanabe S, Aoyama, Tsukamoto K (2009) A new species of freshwater eel Anguilla luzonensis (Teleostei: Anguillidae) from Luzon Island of the Philippines. Fish Sci 75(2): 389-392.
Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151: 185-207.
White SL, Rainbow PS (1984) Regulation of zinc concentration by Palaemon elegans (Crustacea: Decapoda): zinc flux and effects of temperature, zinc concentration and moulting. Mar Ecol Prog Ser 16: 135-147.
Yamano K, Tagawa M, de Jesus EG, Hirano T, Miwa S, Inui Y (1991) Changes in whole body concentrations of thyroid hormones and cortisol in metamorphosing conger eel. J Comp Physiol B 161: 371-375.
Yosef TG & Casselman JM (1995) A procedure for increasing the precision of otolith age determination of tropical fish by differentiating biannual recruitment. In Recent Developments in Fish Otolith Research (Secor DH, Dean JM & Campana SE, eds), pp. 247–269. Hilton Head, SC: University of South Carolina Press.
Zhang Z, Runham NW (1992) Initial development of Oreochromis niloticus (Toleostei, Cichlidae) otoliths. J Zool (Lond) 227: 465-478.
Zenitani H, Kimura R (2007) Elemental analysis of otoliths of Japanese anchovy: trail to discriminate between Seto Inland Sea and Pacific stock. Fish Sci 73: 1-8.
張正芳、李福銓、余廷基 (1990) 四種水產藥物對鰻魚之毒性研究 臺灣省水產試驗所試驗報告 46: 189-198。
曾萬年 (1982) 記台灣新紀錄之西里伯斯鰻鰻線 生物科學 19: 57-66。
曾萬年 (1983) 台灣產鰻線之種類識別及其生產量 中國水產 366: 16-23。
曾萬年 (1996) 鰻線漁獲量的變動及其推測原因 中國水產月刊 520: 17-25。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43174-
dc.description.abstract耳石微量元素已經廣泛地被用來當作魚類環境生活史及族群判別研究之工具。而在利用耳石微量元素進行研究之前,釐清耳石微量元素變化與外在環境、耳石結晶型態以及魚類生理之關係是非常重要的工作。錳元素(Mn)屬於耳石微量元素之一,近年的研究陸續發現魚類耳石的核心中錳元素濃度有不尋常的上升現象,但上升原因及其調控因子至今仍不甚了解。為了暸解魚類耳石中錳元素變化的時機、原因及其生物意義,我們利用雷射感應偶合電漿質譜儀(LA-ICPMS)測量了48尾來自高屏溪及大鵬灣的野生日本鰻的耳石微量元素之時序列變化,並在掃描式電子顯微鏡(SEM)下觀察其耳石的微細構造,然後以拉曼光譜儀測量耳石的結晶型態。此外,以日本鰻鰻線為對象,進行為期六個月的高錳酸鉀室內控制實驗,以期了解環境中錳元素濃度變化與耳石錳元素之關係。
  結果發現,鰻魚耳石的Mn/Ca比可區分成三種型態:(1)初期發育階段上升型:亦即耳石核心周圍(約距核心300μm以內)之平均Mn/Ca比顯著高於黃鰻階段 (p<0.001-0.05),佔82.15%;(2)黃鰻階段上升型:耳石在黃鰻階段之平均Mn/Ca比顯著較高(p<0.05),佔8.33%;(3)無上升型:核心至邊緣之Mn/Ca比皆無明顯的差異,佔10.42%。這些結果顯示,大部分日本鰻的耳石在初期發育階段皆有不尋常之Mn/Ca比升高現象,暗示日本鰻在初期發育階段會有大量吸收錳元素的現象。利用耳石Sr/Ca比與Ba/Ca比將所測定的日本鰻在黃鰻階段之棲地利用方式分為三種類型(海水型、淡水型及半淡鹹水型),結果發現黃鰻階段的耳石Mn/Ca比在不同棲地利用類型間並無顯著差異。控制實驗結果也顯示,鰻線階段之後的耳石內錳元素濃度在長期添加1ppm的高錳酸鉀與控制組之間並無明顯差異。這些結果進一步證明耳石內的錳元素不易受到外在環境鹽度及錳元素濃度所影響。此外,拉曼光譜的測定結果也顯示,無論是哪一種Mn/Ca比的時序列變化型,耳石的核心周圍或邊緣之結晶型態都是屬於霰石結晶(aragonite),表示錳元素濃度的升高現象並不是因為結晶型態的不同所造成的。我們將耳石Mn/Ca比的時序列變化與耳石微細構造及鍶鈣比(Sr/Ca)的時序列變化對照之後,發現初期發育階段上升型的個體,其耳石核心周圍的Mn/Ca比會隨著Sr/Ca比急遽下降而上升,Mn/Ca比最大值出現在Sr:Ca比降至低於4 ‰之後,亦即鰻線進入河口時。這顯示耳石錳元素在鰻魚初期發育階段的上升現象與柳葉魚變態為玻璃鰻之後至鰻線進入河口的過程有關,這段期間鰻魚可能有特殊的生理需求而從外界大量攝入錳元素。此現象同時也在美洲鰻與歐洲鰻的耳石中發現。因此錳元素的上升應為鰻魚的共同生理現象。綜合以上結果,鰻魚初期發育階段耳石內的錳元素上升現象可能是生理需求而非環境中的錳元素濃度或是耳石結晶型態之影響。
zh_TW
dc.description.abstractTrace elements in otolith have been widely applied to reconstruct migratory environmental history of the fish and to discriminate the population structure as well. However, the mechanism of deposition of trace elements in the otolith is still not completely understood. The deposition is a complex biogeochemical process was influenced by the environmental factors, the physiology and ontogeny of the fish, as well as the crystal structure of otolith. It is important to understand the mechanism of the deposition of elements in otolith before otolith microchemistry is used for ecological implication. Manganese (Mn) is one of the 31 important trace elements in the fish otolith. The phenomenon of elevated Mn concentration in the otolith core has been found in many fishes, but the factors affecting the concentrations of Mn in otolith are not well understood. The elemental composition in otoliths of 48 wild yellow-stage Japanese eels was examined by laser ablation-inductively coupled plasma mass spectrometry to understand the change of manganese (Mn) concentration in otolith in relation to the life history events of the eel. The otolith microstructure and crystal structure of CaCO3 were also examined by scanning electron microscopy and Raman spectroscopy. In addition, to understand the effects of ambient Mn concentrations on the otolith Mn concentration, the elvers of Japanese eel were reared for 6 months in the laboratory.
Temporal change of Mn/Ca ratios in the otoliths of wild eels can be classified into 3 types: 1) the Mn/Ca ratios in otolith elevated at early life stage of the eel (81.25 %), the mean Mn/Ca ratios at core region of the otolith in the early stage were significantly greater than those at yellow-stage of the eel (p <0.001-0.05, respectively). 2) Mn/Ca ratios elevated in the yellow eel stage but not in the early stage (8.33%), the mean Mn/Ca ratios at the yellow-stage were significantly greater than that the early stage ( p <0.05). 3) no significant elevation (10.42%). The elevated Mn/Ca ratios in the otolith core region were found in most of the eels examined, suggesting that in the Mn was abundantly uptaken from ambient water at early stage of the eel. The Mn/Ca ratios were not significantly different among 3 types of habitat use of the eel which was classified by Sr/Ca and Ba/Ca ratios in otolith of the eel at yellow stage. In addition, Mn concentration in otolith of reared eels were not significantly different between treatments of KMnO4. This further indicated that the elevated Mn concentration in otolith was not related to the salinity and the ambient Mn concentration. The Raman effect also indicated that the elevated Mn concentration in the otolith was not due to different crystalline structures of CaCO3 because all of the otolith were aragonite, not vaterite. The peak Mn/Ca ratios occurred as Sr/Ca ratios drastically decreased to less than 4 ‰ while arriving at the estuary as elver. The peak Mn/Ca ratios in the otolith of elver stage may reflect its physiological and requirement in the upstream migration. The elevated Mn concentration in the core region of the otolith of Japanese eel was also found in the other temperate eels, A. anguilla and A. rostrata, which seems a common phenomenon of the angullid eel. In conclusion, the elevated Mn concentrations in otolith of the eel at early life stage might be due to the effect of physiology rather than environmental effect or crystalline structure of otolith.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:40:50Z (GMT). No. of bitstreams: 1
ntu-98-R96b45003-1.pdf: 7372513 bytes, checksum: 58f50f797ef19dcfb9532f3aff7b4e08 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要……………………………………………………………………………….i
英文摘要……………………………………………………………………………...iii
目錄……………………………………………………………………………………v
前言
1. 日本鰻的生物學 1
1.1 分類學及地理分布 1
1.2 生活史及發育階段的變化 2
1.3 柳葉鰻變態時的生理變化 3
2. 耳石的構造與生態應用 5
2.1 耳石的形態與功能 5
2.2 耳石形成的機制與微細構造 6
2.3 耳石微量元素組成的分析及應用 10
2.4 耳石內微量元素變動的影響因子 12
3. 耳石內錳元素之上升現象與其相關研究 16
4. 研究動機與目的 17
材料與方法
1. 樣本採集 19
2. 高錳酸鉀的添加實驗 19
3. 耳石的取出與製備 20
4. 耳石微量元素組成的分析 22
4.1  SB-ICP-MS的分析步驟 22
4.2  LA-ICP-MS的分析步驟 23
5. 日本鰻棲地利用的分類 23
6. 耳石微細構造與年齡的判讀 24
7. 拉曼光譜的結晶型測定 24
8. 資料分析 25
結果
1. 三對耳石的形狀差異 27
2. 耳石錳元素的不對稱性 27
3. 耳石錳鈣比的時序列變化之類型 27
4. 耳石錳鈣比與鍶鈣比的時序列變化之關係 29
5. 日本鰻耳石微量元素比值在棲地利用類型之間的比較………………...30
6. 高錳酸鉀對耳石Mn/Ca比的影響……………………………………….31
6.1 高錳酸鉀對體成長的影響………………………………………….31
6.2 飼育水的錳元素濃度之日變化…………………………………….31
6.3 高錳酸鉀對耳石錳鈣比之影響…………………………………….32
6.3.1 溶液進樣方式之分析結果…………………………………32
6.3.2 雷射剝蝕方式之分析結果…………………………………32
7. 拉曼光譜的耳石結晶型態之測定………………………………………...33
8. 美洲鰻、歐洲鰻的耳石Mn/Ca比之時序列變化……………………….34
討論
1. 耳石錳鈣比分析的可信度 36
2. 影響耳石錳鈣比的環境因子 38
2.1 錳鈣比與不同棲地型態之關係 39
2.2 飼育水的錳元素濃度對耳石微化學之影響 40
3. 耳石錳鈣比與碳酸鈣晶體結構之關係 42
4. 日本鰻耳石中錳鈣比在初期發育階段升高的成因之探討 43
4.1 耳石Mn/Ca比上升現象啟動與變態之關係 44
4.2 耳石Mn/Ca比在變態結束到進入河口域期間上升現象 45
5. Mn/Ca比上升現象在魚類生態研究上之應用 48
6. 結論 49
參考文獻 50
表……………………………………………………………………………………..67
圖……………………………………………………………………………………..71
dc.language.isozh-TW
dc.title日本鰻耳石的錳元素上升原因之探討zh_TW
dc.titleThe dramatic elevation of manganese concentrations in the otolith of Japanese eel Anguilla japonicaen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor韓玉山(Yu-San Han)
dc.contributor.oralexamcommittee黃鵬鵬(Pung-Pung Hwang),蕭仁傑(Jen-Chieh Shiao),王佳惠(Chia-Hui Wang)
dc.subject.keyword日本鰻,耳石,錳鈣比,ICP-MS,魚類生理與生態,zh_TW
dc.subject.keywordJapanese eel,otolith,Mn/Ca ratios,ICP-MS,fish physiology and ecology,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2009-07-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
7.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved