請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43157完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖(Tzong-Lin Wu) | |
| dc.contributor.author | Ya-Shin Chen | en |
| dc.contributor.author | 陳雅欣 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:39:55Z | - |
| dc.date.available | 2009-07-28 | |
| dc.date.copyright | 2009-07-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-14 | |
| dc.identifier.citation | [1] ] Y.-P. Zhang, T. K.-C. Lo, and Y.-M. Hwang, “A dielectric-loaded miniature antenna for micro-cellular and personal communications,” in Antennas Propagat. Soc. Int. Symp., AP-S. Dig., vol. 2, 1995, pp.1152–1155.
[2] M. C. Linng*, Y. M. Chan, C. C. Hunng and W. S. Chcn, “A Model for the Radiation Modes Associated with Capacitor-Loaded Circular Patch Antenna” Antennas and Propagation Society International Symposium, 2002. IEEE Volume: 2, On page(s): 878- 881 vol.2 [3] Jui-Han Lu and Kin-Lu Wong,” Slot-loaded, meandered rectangular microstrip antenna with compact dual frequency operation” , : Electronics Letters 28 May 1998 Volume: 34, Issue: 11 [1] J. S. Colburn and Y. Rahmat-Samii, “Patch antennas on externally perforated high dielectric constant substrates,” IEEE Trans. AntennasPropag., vol. 47, no. 12, pp. 1785–1794, Dec. 1999. [2] H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403–2414, Sep. 2004. [3] H. Mosallaei and K. Sarabandi, “Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 45–52, Jan. 2007 [4] R. Gonzalo, P. De Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp.2131–2138, Nov. 1999. [5] Dan Sievenpiper, Lijun Zhang, Romulo F. Jimenez Broas, Nicholas G. Alex´opolous, and Eli Yablonovitch, “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band,” IEEE transactions on microwave theory and techniques, vol. 47, no. 11, pp. 2059-2074, Nov. 1999 [6] F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Trans. Antennas Propagat, vol. 51, no. 10, part 2, 2936–46, 2003. [7] Jing Liang , and Hung-Yu David Yang,” Radiation Characteristics of a Microstrip Patch Over an Electromagnetic Bandgap Surface,” IEEE transactions on antenna and propagation, Vol. 55, no. 6, pp. 1691-1697, June 2007 [8] Dan Sievenpiper,, Lijun Zhang, Romulo F. Jimenez Broas, Nicholas G. Alex´opolous, and Eli Yablonovitch, “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999 [9] Fan Yang and Yahya Rahmat-Samii, “Electromagnetic Bandgap Structure in Antenna Engineering” [10] E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B, Condens. Matter, vol. 50, no. 3, 1945–8, July 1994. [11] A. S. Barlevy and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting vias: concept analysis, and design,” IEEE Trans. Antennas Propagat., vol. 49, 242–353, 2001. [12] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech., vol. 47, 2059–74, 1999. [13] F.-R.Yang, K.-P. Ma,Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG)structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech., vol. 47, 1509–14, 1999. [14] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microw. and Guided Wave Lett., vol. 8, no. 2, 69–71, 1998. [15] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory andMicrowave Applications, Wiley-IEEE Press, 2005. [16] Kraus and Marhefka, “Antennas for all applications”. p. 318 [17] Warren L. Stutzman, Gary A. Thiele, 'AntennaTheory and Design', John Wiley & Sons, Inc,USA, 1997 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43157 | - |
| dc.description.abstract | 在無線通訊系統中,我們主要依賴天線來完成信號傳送與接收的作業。然而在現今科技發展快速的趨勢下,可攜式電子產品在無線通訊市場上出現的頻率也愈來愈高。其中有些產品的操作頻率是屬於較低的頻帶範圍內,例如使用802.11b和802.11g規格的無線區域網路、Bluetooth藍芽傳輸系統以及GSM全球行動通訊系統。為了使天線能夠與可攜式電子通訊產品結合,我們提出了適用於微帶天線的縮小化設計方法。微帶天線有許多優點適合製作於通訊產品內,但是由於其共振機制為尺寸需大約等於二分之一波長的限制,較不適合用於低頻系統中。此篇論文所提出的方法為在微帶天線下放置有限個數的電磁能隙結構來達到縮小化的目的。模擬結果證明加入此結構後的天線仍然保有原來的特性。除此之外,我們亦單純針對電磁能隙結構的各種參數進行分析與討論,並且為此提供了設計微小化天線的程序。最後,我們將比較一般微帶天線和縮小化天線的效能。這些將在模擬與實作量測中呈現。 | zh_TW |
| dc.description.abstract | In wireless communication systems the signal transmission always relies on antennas. With the advance in technology nowadays, the appearances of miniaturized electronic products are more frequent. Most of these communication products are operating at lower frequency band such as WLAN which uses the specification of 802.11b and 802.11g, Bluetooth system as well as GSM900 are operating at lower frequency band below a few GHz. In order to integrate with miniaturized wireless devices, we have proposed an EBG integrated patch antenna for reducing antenna size. With numerous advantages, the conventional microstrip antennas can be employed in many devices but are not proper for compact systems which have low operation frequency. The good radiation property of a patch antenna integrated with EBG structure on a dielectric slab can still be maintained. The simulation and measurement have been developed for verification. Furthermore, we have an analysis about EBG parameters and propose a design procedure for better EBG patch antenna design. The comparisons between a conventional and EBG patch antenna have also discussed in this thesis. The overall performance is validated in the simulation and measurement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:39:55Z (GMT). No. of bitstreams: 1 ntu-98-J96921017-1.pdf: 2177225 bytes, checksum: 0538bc19fe6d6d3c6042230b03ac7dfe (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Abstract I
摘要 II Table of Contents III Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 3 1.3 Contributions 7 1.4 Thesis Organization 7 Chapter 2 Analysis of EBG as A Ground Plane 10 2.1 Electromagnetic band-gap structure (EBG) definition 11 2.2 Dispersion Diagram 13 2.2.1 Full Wave Analysis Model Setup 14 2.2.2 Parametric Analysis 16 2.3 Miniaturization Concept 23 2.4 Summary 25 Chapter 3 Patch Antenna Design Utilizing EBG Structure 27 3.1 Patch Antenna Basic Theory 27 3.1.1 Input Impedance 29 3.1.2 Radiation Characteristics 30 3.2 Patch Antenna Utilizing Finite EBG Cells 32 3.2.1 Theory of EBG Patch Antenna 32 3.2.2 Configuration of EBG Patch Antenna 36 3.2.3 Input Impedance Matching Mechanism 39 3.3 Design Method and Number Analysis of EBG Cell 40 3.4 Summary 46 Chapter 4 Experiment Results 48 4.1 Practical Antenna Configuration 48 4.2 Parametric Analysis 49 4.3 Comparison of Conventional Patch antenna and EBG Patch Antenna 54 Chapter 5 Conclusions and Future Work 60 5.1 Conclusions 60 5.2 Future Work 61 References 62 | |
| dc.language.iso | en | |
| dc.subject | 縮小化 | zh_TW |
| dc.subject | 微帶天線 | zh_TW |
| dc.subject | 電磁能隙結構 | zh_TW |
| dc.subject | EBG structure | en |
| dc.subject | Microstrip antenna | en |
| dc.subject | size reduction | en |
| dc.subject | miniaturization | en |
| dc.title | 利用電磁能隙結構之慢速波特性設計縮小化微帶天線 | zh_TW |
| dc.title | Microstrip Antenna Miniaturization Design Using Slow Wave Property of EBG Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪子聖,洪志斌,駱韋仲,王侑信 | |
| dc.subject.keyword | 微帶天線,電磁能隙結構,縮小化, | zh_TW |
| dc.subject.keyword | Microstrip antenna,EBG structure,miniaturization,size reduction, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
