請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43113完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳安宇(An-Yeu Wu) | |
| dc.contributor.author | Jia-Cheng Wu | en |
| dc.contributor.author | 吳佳謙 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:37:35Z | - |
| dc.date.available | 2009-07-23 | |
| dc.date.copyright | 2009-07-23 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-16 | |
| dc.identifier.citation | [1] ITRS, International Technology Roadmap for Semiconductors, http://public.itrs.net.
[2] J. A. Davis et al. “Interconnect Limits on Gigascale Integration (GSI) in the 21st Century,” Proc. IEEE, vol. 89, pp. 305-324, Mar. 2001. [3] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,” Proc. IEEE, vol. 89, pp. 490-504, April. 2001. [4] D. Sylvester and K. Keutzer, “A Global Wiring Paradigm for Deep Submicron Design,” IEEE Trans. CAD/ICAS, vol. 19, pp. 242-252, Feb. 2000. [5] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,” Proc. IEEE, vol. 89, pp. 490-504, April. 2001. [6] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm,” IEEE Computer, 35(1):70–78, Jan. 2002. [7] W. Topol et al., “Three-dimensional integrated circuits,” IBM J. Res. Develop., vol. 50, no. 4/5, pp. 491-506, 2006. [8] B. Black et al., “Die stacking (3D) microarchitecture,” in Proc. Int. Symposium on Microarchitecture, pp. 469-479, Dec. 2006. [9] Samsung. [Online]. Available: http://www.samsung.com/ [10] Tezzaron. [Online]. Available: http://www.tezzaron.com/technology/FaStack.htm [11] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs-- the pros and cons of going vertical,” IEEE Design & Test of Computers, pp.498-510, 2005. [12] R.M. Lea et al., “A 3D Stacked Chip Packaging Solution for Miniaturized Massively Parallel Processing,” IEEE Trans. Advanced Packaging, vol. 22, no. 3, pp. 424-432, Aug. 1999. [13] R. J. Gutmann et al., “Three-dimensional (3D) ICs: A technology platform for integrated systems and opportunities for new polymeric adhesives,” International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, pp. 173-180, 2001. [14] A. Y. Zeng, J. J. L¨u, K. Rose, and R. J. Gutmann, “First-Order Performance Prediction of Cache Memory with Wafer-Level 3D Integration,” IEEE Design & Test of Computers, 22(6):548–555, 2005. [15] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A Low-overhead Fault Tolerance Scheme for TSV-based 3D Network on Chip Links,” IEEE/ACM International Conference on Computer-Aided Design, pp. 598-602, 2008. [16] V. Pavlidis, E. Friedman, “3D Topologies for Networks-on-Chip,” IEEE TVLSI, pp. 1081-1090, 2007. [17] J. Joyner, P. Zarkesh-Ha, and J. Meindl, “A Stochastic Global Net-Length Sistribution for a Three-Dimensional System-on-Chip (3D-SoC),” in Proc. of 14th Annual IEEE International ASIC/SOC Conference, pp. 147-151, Sept. 2001. [18] D. Park, S. Eachempati, R. Das, A. Mishra, Y. Xie, N. Vijaykrishnan, and C. Das, “MIRA: A Multi-Layered On-Chip Interconnect Router Architecture,” IEEE ISCA, pp. 251-261, 2008. [19] L. Shang, L. Peh, A. Kumar, and N.K. Jha, “Thermal Modeling, Characterization and Management of On-Chip Networks,” in Proc. of the 37th Annual IEEE/ACM international Symposium on Microarchitecture, International Symposium on Microarchitecture, pp. 67-78, 2004. [20] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff, “Energy Characterization of a Tiled Architecture Processor with On-Chip Networks,” in Proc. Int. Symp. Low Power Electronics and Design, pp. 424-427, Aug. 2003. [21] H.-S. Wang, L.-S. Peh, and S. Malik, “Power-Driven Design of Router Microarchitectures in On-Chip Networks,” in Proc. Int. Symp. Microarchitecture, pages 105-116, Nov. 2003. [22] M. B. Taylor et al., “Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP and Streams,” in Proc. Int. Symp. Computer Architecture, pp. 2-13, June 2004. [23] C. Sun, L. Shang, and R. P. Dick, “Three Dimensional Multiprocessor System-on-Chip Thermal Optimization,” ISSS, pp. 117-122, Oct. 2007. [24] K. Puttaswamyy, and G. H. Lohz, “Thermal Herding: Microarchitecture Techniques for Controlling Hotspots in High-Performance 3D-Integrated Processors,” IEEE International Symposium on High Performance Computer Architecture, pp. 193-204, 2007 [25] C. Zhu, Z. Gu, L. Shang, R. P. Dick, and R. Joseph, “Three-Dimensional Chip-Multiprocessor Run-Time Thermal Management,” IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, vol. 27, no. 8, pp. 1479-1492, Aug. 2008. [26] S. Xu, I. Benito and W. Burleson,“Thermal Impacts on NoC Interconnects”, NOCS, pp.220-220, 2007 [27] D. Brooks and M. Martonosi, “Dynamic Thermal Management for High-Performance Microprocessors,” in Proc. Int. Symp. on High-Performance Computer Architecture, pp. 171-182, Jan. 2001. [28] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. “Managing the Impact of Increasing Microprocessor Power Consumption,” in Intel Technology Journal, pp. 1-9, Q1 2001. [29] W. Huang, J. Renau, S.-M. Yoo, and J. Torellas. “A Framework for Dynamic Energy Efficiency and Temperature Management,” in Proc. of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 202-213, Dec. 2000. [30] K. Skadron, M.R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan, “Temperature-Aware Microarchitecture,” SIGARCH Comput. Archit. News, vol. 31, no. 2, pp. 2-13, May 2003. [31] B. Feero and P. P. Pande. “Performance Evaluation for Three-Dimensional Networks-on-Chip,” in Proc. of ISVLSI, pp. 305-310, 2007. [32] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, N. Vijaykrishnan , M. Yousif, C. Das, “A Novel Dimensionally-Decomposed Router for On-Chip Communication in 3D Architectures,” IEEE ISCA, pp. 138-149, 2007. [33] H. Matsutani, M. Koibuchi, H. Amano, “Tightly-Coupled Multi-Layer Topologies for 3D NoCs,” ICPP, pp. 75-85, 2007. [34] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow Width Operands to Improve Processor Power and Performance,” in Proc. of the 5th Intl. Symp. on High Perf. Comp. Arch., pp. 13-22, Orlando, FL, USA, January 1999. [35] L. Villa, M. Zhang, and K. Asanovi´c, “Dynamic Zero Compression for Cache Energy Reduction,” in Proc. of the 33rd Intl. Symp. on Microarchitecture, pp.214-220, Monterey, CA, USA, December 2000. [36] G. H. Loh, “Exploiting Data-Width Locality to Increase Superscalar Execution Bandwidth,” in Proc. of the 35th Intl. Symp. on Microarchitecture, pp. 395-405, Istanbul, Turkey, November 2002. [37] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev, “Register Packing: Exploiting Narrow-Width Operands for Reducing Register File Pressure,” in Proc. of the 37th Intl. Symp. On Microarchitecture, pp. 304-315, Portland, OR, USA, December 2004. [38] S.-Y. Lin, C.-H. Huang, C.-h. Chao, K.-H. Huang, and A.-Y. Wu,'Traffic-Balanced Routing Algorithm for Irregular Mesh-Based On-Chip Networks,' IEEE Trans. on Computers, vol. 52, pp. 1156-1168, Sept. 2008. [39] J. Upadhyay, et al., 'A Traffic -Balanced Adaptive Wormhole Routing Scheme for Two-Dimensional Meshes,' IEEE Trans. on Computers, vol. 46, no. 2, pp. 190-197, Feb. 1997. [40] M. Palesi, G. Longo, S. Signorino, R. Holsmark, S. Kumar, and V. Catania, 'Design of Bandwidth Aware and Congestion Avoiding Efficient Routing Algorithms for Networks-on-Chip Platforms,' in Second ACM/IEEE International Symposium on Networks-on-Chip (NOCS 2008), pp. 97-106, 2008 . [41] W. Dally and C. Seitz, ªDeadlock-Free Message Routing in Multiprocessor Interconnection Networks,” IEEE Trans. Computers, vol. 36, no. 5, pp. 547-553, May 1987. [42] M. Koibuchi, A. Jouraku, K.Watanabe, and H. Amano, “Descending Layers Routing: A Deadlock-Free Deterministic Routing using Virtual Channels in System Area Networks with Irregular Topologies,” in Proc. of the International Conference on Parallel Processing, pp. 527-536, Oct. 2003. [43] W. J. Dally, B. Towles, “Principles and Practices of Interconnection Networks,” Morgan Kaufmann Publishers, 2004. [44] L. Shang, L.-S. Peh and N. K. Jha, “PowerHerd: A Distributed Scheme for Dynamically Satisfying Peak-Power Constraints in Interconnection Networks,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 1, pp. 92-110, Jan. 2006. [45] J. Clabes et al, “Design and implementation of the POWER5 microprocessor,” in Proc. Int. Solid-State Circuits Conf., pp. 56-57, Jan. 2004. [46] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection Networks,” San Francisco, CA: Morgan Kaufmann, 2003. [47] “Noxim: Network-on-Chip Simulator,” http://sourceforge.net/projects/noxim , 2008. [48] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, S. Borkar, ”A 5-GHz Mesh Interconnect for A Teraflops Processor”, IEEE MICRO, vol. 27, pp. 51-61, 2007. [49] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron, and M. R. Stan. “Compact Thermal Modeling for Temperature-Aware Design,” in Proc. of the 41st ACM/IEEE Design Automation Conference (DAC), pp. 878-883, June 2004. [50] L. Shang, L.-S. Peh, N. K. Jha, “Dynamic Voltage Scaling with Links for Power Optimization of Interconnection Networks,“ IEEE HPCA, pp. 91-102, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43113 | - |
| dc.description.abstract | 本論文將研究三維晶片內網路(3D Network-on-Chip)中的溫度議題。隨著製程演進,晶片內網路成為多核心平台晶片內通訊的常用架構。而結合三維積體電路技術後,三維晶片內網路更具有高整合密度、提升網路頻寬、降低連線延遲與功耗等好處。但當晶片內網路建置在三維積體電路環境時,溫度問題將會比二維晶片內網路更加嚴重。三維積體電路在相同面積下將堆疊數倍的晶粒,因此將造成功率密度急遽增加與各層散熱能力不同等問題。此外,在三維積體電路系統中,網路所造成的溫度跟處理器所造成的溫度皆是造成晶片溫度上升的主要來源。因此晶片內網路所造成的溫度是不可忽視的。傳統在二維晶片內網路之熱處理機制若直接延伸至三維晶片內網路的環境中會造成熱流過小而無法順利運作。在本論文中,我們提出了一個「交通感知向下路由演算法(Traffic-aware downward routing algorithm)」,其考量了三維積體電路之異質散熱特性,使空間溫度平衡,在一般情況下不影響效能並降低網路溫度。因此在溫度限制下,向下路由演算法將比傳統路由演算法提供更加的網路效能。另外,我們提出了一個「溫度感知垂直節流技術(Thermal-aware vertical throttling technique)」,其對晶片內網路之溫度監測,在溫度過高時,藉由調整路由器之交通量,使熱點到熱沉間形成散熱路徑,能夠及時把熱點降溫,使時間上溫度平衡並防止溫度過高所導致之網路有效性(availability)下降。我們的實驗結果顯示,向下路由演算法在一般溫度限制下,可以使得網路最大吞吐率(throughput)提升12%。而網路在沒有垂直節流技術下,有效性將嚴重下降。若具有垂直節流技術,在一般溫度限制下,可以使得網路有效接受封包率(available received packet rate)維持在至少60%。因此,對於三維晶片內網路,我們的技術可以達到在一般情況下不影響效能並降溫,且在溫度過高時予以控制,維持系統有效性。 | zh_TW |
| dc.description.abstract | In this thesis, we focus on the thermal problems in 3D Network-on-Chips (NoC). As process scales down, the NoC becomes the popular architecture of on-chip communication in Chip MultiProcessors (CMP) platforms. With 3D IC techniques, 3D NoC can perform higher integrated density, higher network bandwidth, lower interconnection delay, and lower power consumption than 2D NoC. If the NoC is established in the environment of 3D ICs, the thermal problem is more serious than 2D NoC. Many dies stacked up in 3D ICs result in the problems of power density increasing drastically, and different heat dissipations in different layers. Besides, both heats of networks and heats of CPUs are the major reasons that cause temperatures increasing in 3D NoC. Hence, the heats from NoC cannot be ignored. Thermal management techniques in traditional 2D NoC cannot extend to 3D NoC directly. Therefore, thermal management schemes for 3D NoC are needed. In this thesis, a Spatial Thermal Distribution Balancing (STDB) traffic-aware downward routing algorithm is proposed which considers the thermal characteristic of 3D NoC, balances the spatial thermal distribution, and reduced temperature with less performance impact. Besides, a Temporal Thermal Distribution Balancing (TTDB) thermal-aware vertical throttling technique is proposed which monitors the network temperature, controls the traffic in hotspot router, forms the heat flow to heat sink, and prevents from overheating. Experiments show that under the normal thermal limit, the maximum network throughput using the STDB scheme can be improved by 12% than using the general XYZ routing. Besides, the TTDB scheme has the higher received packet rate comparing to the distributed throttling. Under the Markov-Modulated Process (MMP) traffic model, the available received packet rate is at least 60%. Therefore, for 3D NoC, the proposed techniques can reduce temperature with less performance impact in general condition and prevent overheating with less packet loss comparing to traditional techniques. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:37:35Z (GMT). No. of bitstreams: 1 ntu-98-R96943135-1.pdf: 2841129 bytes, checksum: b44a60629bd84914b7b9b130dce44b7b (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | List of Figures xiii
List of Tables xv Chapter 1 Introduction 1 1.1 Motivation and Goal 1 1.1.1 On-Chip Communication Trend 1 1.1.2 3D IC and 3D Network-on-Chip 2 1.1.3 Thermal Issues for 3D Network-on-Chip 5 1.1.4 Goal 9 1.2 Thesis Organization 10 Chapter 2 Related Works 11 2.1 Evaluation of 3D Network-on-Chip 11 2.2 3D Router Architectures 13 2.3 Thermal Management Schemes 16 2.4 Summary 18 Chapter 3 Proposed STDB Traffic-Aware Downward Routing Algorithm for 3D NoC 20 3.1 Fourier’s Law 20 3.2 Concept of Spatial Thermal Distribution Balancing (STDB) on 3D NoC 21 3.3 STDB Traffic-Aware Downward Routing Algorithm 25 3.4 Summary 34 Chapter 4 Proposed TTDB Thermal-Aware Vertical Throttling for 3D NoC 35 4.1 Concept of Temporal Thermal Distribution Balancing (TTDB) on 3D NoC 35 4.2 TTDB Thermal-Aware Flow Control 37 4.3 Summary 44 Chapter 5 Performance Evaluation 45 5.1 Simulation Platform 45 5.2 Experimental Results 48 5.2.1 The Results of STDB 49 5.2.2 The Results of TTDB 58 Chapter 6 Conclusions and Future Works 64 6.1 Conclusions 64 6.2 Future Works 65 References 66 | |
| dc.language.iso | en | |
| dc.subject | 熱管理機制 | zh_TW |
| dc.subject | 晶片內網路 | zh_TW |
| dc.subject | 三維積體電路 | zh_TW |
| dc.subject | NoC | en |
| dc.subject | Thermal management scheme | en |
| dc.subject | 3D IC | en |
| dc.title | 適用於三維晶片內網路之熱管理機制 | zh_TW |
| dc.title | Thermal Management Schemes for 3D Network-On-Chip | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳良基(Liang-Gee Chen),張世杰(Shih-Chieh Chang),魏宏宇(Hung-Yu Wei),盧奕璋(Yi-Chang Lu) | |
| dc.subject.keyword | 晶片內網路,三維積體電路,熱管理機制, | zh_TW |
| dc.subject.keyword | NoC,3D IC,Thermal management scheme, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
