請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43090
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴凌平 | |
dc.contributor.author | Chia-Hisang Hsueh | en |
dc.contributor.author | 薛嘉祥 | zh_TW |
dc.date.accessioned | 2021-06-15T01:36:25Z | - |
dc.date.available | 2010-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-16 | |
dc.identifier.citation | Abriel H. (2007). Roles and regulation of the cardiac sodium channel Na(v)1.5: Recent insights from experimental studies. Cardiovasc Res 76, 381-389.
Abriel H & Kass RS. (2005). Regulation of the Voltage-Gated Cardiac Sodium Channel Nav1.5 by Interacting Proteins. Trends in Cardiovascular Medicine 15, 35-40. Akhavan A, Atanasiu R & Shrier A. (2003). Identification of a COOH-terminal segment involved in maturation and stability of human ether-a-go-go-related gene potassium channels. The Journal of biological chemistry 278, 40105-40112. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ & January CT. (2006). Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113, 365-373. Antonarakis SE, Krawczak M & Cooper DN. (2000). Disease-causing mutations in the human genome. European Journal of Pediatrics 159, S173-S178. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, Gussak I, LeMarec H, Nademanee K, Perez Riera AR, Shimizu W, Schulze-Bahr E, Tan H & Wilde A. (2005). Brugada Syndrome: Report of the Second Consensus Conference: Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111, 659-670. Antzelevitch C, Burashnikov A & Diego JM. (2008). Mechanisms of Cardiac Arrhythmia. In Electrical Diseases of the Heart, pp. 65-132. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP, Jr., Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu L-F, Haissaguerre M, Schimpf R, Borggrefe M & Wolpert C. (2007). Loss-of-Function Mutations in the Cardiac Calcium Channel Underlie a New Clinical Entity Characterized by ST-Segment Elevation, Short QT Intervals, and Sudden Cardiac Death. Circulation 115, 442-449. Aydar E & Palmer C. (2001). Functional characterization of the C-terminus of the human ether-a-go-go-related gene K(+) channel (HERG). J Physiol 534, 1-14. Balser JR. (2001). The cardiac sodium channel: gating function and molecular pharmacology. Journal of molecular and cellular cardiology 33, 599-613. Baroudi G, Acharfi S, Larouche C & Chahine M. (2002). Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome. Circulation research 90, E11-16. Benito B, Brugada R, Brugada J & Brugada P. (2008). Brugada syndrome. Prog Cardiovasc Dis 51, 1-22. Bers DM. (2002). Cardiac excitation-contraction coupling. Nature 415, 198-205. Bers DM P-RE. (1999). Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 42, 339-360. Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, van Langen IM, Tan-Sindhunata G, Bink-Boelkens MT, van Der Hout AH, Mannens MM & Wilde AA. (1999). A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circulation research 85, 1206-1213. Bian J-S & McDonald T. (2007). Phosphatidylinositol 4,5-bisphosphate interactions with the HERG K+ channel. Pflügers Archiv European Journal of Physiology 455, 105-113. Botstein D & Risch N. (2003). Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl), 228-237. Boussy T, Paparella G, de Asmundis C, Sarkozy A, Chierchia GB, Brugada J, Brugada R & Brugada P. (2008). Genetic basis of ventricular arrhythmias. Cardiol Clin 26, 335-353, v. Boussy T, Sarkozy A, Chierchia G-B, Richter S & Brugada P. (2007). The Brugada Syndrome: Facts and Controversies. Herz 32, 192-200. Brugada J, Brugada R & Brugada P. (2007). Channelopathies: a New Category of Diseases Causing Sudden Death. Herz 32, 185-191. Brugada P & Brugada J. (1992). Right bundle branch block, persistent ST-segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. J Am Coll Cardiol 20, 1391-1396. Camacho JA, Hensellek S, Rougier JS, Blechschmidt S, Abriel H, Benndorf K & Zimmer T. (2006). Modulation of Nav1.5 channel function by an alternatively spliced sequence in the DII/DIII linker region. The Journal of biological chemistry 281, 9498-9506. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortiz-Lopez R, Wang Z, Antzelevitch C, O'Brien RE, Schulze-Bahr E, Keating MT, Towbin JA & Q. W. (1998). Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293-296. Chen Y-H, Xu S-J, Bendahhou S, Wang X-L, Wang Y, Xu W-Y, Jin H-W, Sun H, Su X-Y, Zhuang Q-N, Yang Y-Q, Li Y-B, Liu Y, Xu H-J, Li X-F, Ma N, Mou C-P, Chen Z, Barhanin J & Huang W. (2003). KCNQ1 Gain-of-Function Mutation in Familial Atrial Fibrillation. Science 299, 251-254. Chudasama NL, Marx SO & Steinberg SF. (2008). Scaffolding Proteins in Cardiac Myocytes. In Protein-Protein Interactions as New Drug Targets, pp. 301-325. Cormier JW, Rivolta I, Tateyama M, Yang AS & Kass RS. (2002). Secondary structure of the human cardiac Na+ channel C terminus: evidence for a role of helical structures in modulation of channel inactivation. The Journal of biological chemistry 277, 9233-9241. Crotti L, Lundquist AL, Insolia R, Pedrazzini M, Ferrandi C, De Ferrari GM, Vicentini A, Yang P, Roden DM, George AL, Jr & Schwartz PJ. (2005). KCNH2-K897T Is a Genetic Modifier of Latent Congenital Long-QT Syndrome. Circulation 112, 1251-1258. Delisle BP, Anson BD, Rajamani S & January CT. (2004). Biology of cardiac arrhythmias: ion channel protein trafficking. Circulation research 94, 1418-1428. Delisle BP, Slind JK, Kilby JA, Anderson CL, Anson BD, Balijepalli RC, Tester DJ, Ackerman MJ, Kamp TJ & January CT. (2005). Intragenic suppression of trafficking-defective KCNH2 channels associated with long QT syndrome. Mol Pharmacol 68, 233-240. Eric Schulze-Bahr LEGnBKSTWCWMBWH. (2003). Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: Different incidences in familial and sporadic disease. Human Mutation 21, 651-652. Fahmi AI, Patel M, Stevens EB, Fowden AL, John JE, 3rd, Lee K, Pinnock R, Morgan K, Jackson AP & Vandenberg JI. (2001). The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J Physiol 537, 693-700. George AL, Jr. (2005). Inherited disorders of voltage-gated sodium channels. J Clin Invest 115, 1990-1999. Gerard J T. (1999). Principles of human anatomy. 8th edn, pp. 392-415. New York : Harper & Row, c1989. Goldenberg I & Moss AJ. (2008). Long QT syndrome. J Am Coll Cardiol 51, 2291-2300. Gong Q, Keeney DR, Molinari M & Zhou Z. (2005). Degradation of trafficking-defective long QT syndrome type II mutant channels by the ubiquitin–proteasome pathway. The Journal of biological chemistry 280, 19419–19425. Gong Q, Keeney DR, Robinson JC & Zhou Z. (2004). Defective assembly and trafficking of mutant HERG channels with C-terminal truncations in long QT syndrome. Journal of molecular and cellular cardiology 37, 1225-1233. Grant AO. (2005). Electrophysiological basis and genetics of Brugada syndrome. Journal of cardiovascular electrophysiology 16 Suppl 1, S3-7. Hayashi K, Shimizu M, Ino H, Yamaguchi M, Mabuchi H, Hoshi N & Higashida H. (2002). Characterization of a novel missense mutation E637K in the pore-S6 loop of HERG in a patient with long QT syndrome. Cardiovasc Res 54, 67-76. Kaab S & Schulze-Bahr E. (2005). Susceptibility genes and modifiers for cardiac arrhythmias. Cardiovasc Res 67, 397-413. Kass RS. (2006). Sodium Channel Inactivation in Heart: A Novel Role of the Carboxy-Terminal Domain. Journal of Cardiovascular Electrophysiology 17, S21-S25. Ko EA, Han J, Jung ID & Park WS. (2008). Physiological roles of K+ channels in vascular smooth muscle cells. Jornal of Smooth Muscle Research 44, 65-81. Kupershmidt S, Yang T, Chanthaphaychith S, Wang Z, Towbin JA & Roden DM. (2002). Defective human Ether-a-go-go-related gene trafficking linked to an endoplasmic reticulum retention signal in the C terminus. The Journal of biological chemistry 277, 27442-27448. Lang F, Henke G, Embark H, Waldegger S, Palmada M, Böhmer C & Vallon V. (2003). Regulation of channels by the serum and glucocorticoid-inducible kinase - implications for transport, excitability and cell proliferation. Cell Physiol Biochem, 41-50. Lees-Miller JP, Duan Y, Teng GQ, Thorstad K & Duff HJ. (2000). Novel gain-of-function mechanism in K(+) channel-related long-QT syndrome: altered gating and selectivity in the HERG1 N629D mutant. Circulation research 86, 507-513. Lehnart SE, Ackerman MJ, Benson DW, Jr., Brugada R, Clancy CE, Donahue JK, George AL, Jr., Grant AO, Groft SC, January CT, Lathrop DA, Lederer WJ, Makielski JC, Mohler PJ, Moss A, Nerbonne JM, Olson TM, Przywara DA, Towbin JA, Wang L-H & Marks AR. (2007). Inherited Arrhythmias: A National Heart, Lung, and Blood Institute and Office of Rare Diseases Workshop Consensus Report About the Diagnosis, Phenotyping, Molecular Mechanisms, and Therapeutic Approaches for Primary Cardiomyopathies of Gene Mutations Affecting Ion Channel Function. Circulation 116, 2325-2345. Lei M, Zhang H, Grace AA & Huang CLH. (2007). SCN5A and sinoatrial node pacemaker function. Cardiovasc Res 74, 356-365. Liu N, Colombi B, Raytcheva-Buono E, Bloise R & Priori S. (2007). Catecholaminergic Polymorphic Ventricular Tachycardia. Herz 32, 212-217. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, Viswanathan PC, Pfahnl AE, Shang LL, Madhusudanan M, Baty CJ, Lagana S, Aleong R, Gutmann R, Ackerman MJ, McNamara DM, Weiss R & Dudley SC, Jr. (2007). Mutation in Glycerol-3-Phosphate Dehydrogenase 1 Like Gene (GPD1-L) Decreases Cardiac Na+ Current and Causes Inherited Arrhythmias. Circulation 116, 2260-2268. Lori Feinshreiber DS-L, Uri Ashery, Ilana Lotan,. (2009). Voltage-gated Potassium Channel as a Facilitator of Exocytosis. Annals of the New York Academy of Sciences 1152, 87-92. Luqman N, Sung RJ, Wang C-L & Kuo C-T. (2007). Myocardial ischemia and ventricular fibrillation: Pathophysiology and clinical implications. International Journal of Cardiology 119, 283-290. Makielski J, Sheets M, Hanck D, January C & Fozzard H. (1987). Sodium current in voltage clamped internally perfused canine cardiac Purkinje cells. Biophys J 52, 1-11. Makielski JC, Ye B, Valdivia CR, Pagel MD, Pu J, Tester DJ & Ackerman MJ. (2003). A Ubiquitous Splice Variant and a Common Polymorphism Affect Heterologous Expression of Recombinant Human SCN5A Heart Sodium Channels. Circulation research 93, 821-828. Manlio F. M¡Rquez GSAGHGPJGM-FSNMCR. (2007). Ionic Basis of Pharmacological Therapy in Brugada Syndrome. Journal of Cardiovascular Electrophysiology 18, 234-240. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusie-Luna MT, Makielski JC & Ackerman MJ. (2007). SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation 116, 134-142. Meregalli PG, Wilde AAM & Tan HL. (2005). Pathophysiological mechanisms of Brugada syndrome: Depolarization disorder, repolarization disorder, or more? Cardiovasc Res 67, 367-378. Mitcheson JS & Sanguinetti MC. (1999). Biophysical Properties and Molecular Basis of Cardiac Rapid and Slow Delayed Rectifier Potassium Channels. Cell Physiol Biochem 9, 201–216. Mivelaz Y, Di Bernardo S, Pruvot E, Meijboom E & Sekarski N. (2006). Brugada syndrome in childhood: a potential fatal arrhythmia not always recognised by paediatricians. A case report and review of the literature. European Journal of Pediatrics 165, 507-511. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG & Bennett V. (2004). Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America 101, 17533-17538. Mok N, Priori S, Napolitano C, Chan N-Y, Chahine M & Baroudi G. (2003). A Newly Characterized SCN5A Mutation Underlying Brugada Syndrome Unmasked by Hyperthermia. Journal of Cardiovascular Electrophysiology 14, 407-411. Morita H, Wu J & Zipes DP. (2008). The QT syndromes: long and short. Lancet 372, 750-763. Motoike HK, Liu H, Glaaser IW, Yang A-S, Tateyama M & Kass RS. (2004). The Na+ Channel Inactivation Gate Is a Molecular Complex: A Novel Role of the COOH-terminal Domain. J Gen Physiol 123, 155-165. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T & Numa S. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121-127. Opie LH. (2002). Heart Physiology: From Cell to Circulation. Lippincott Williams & Wilkins. Orchard C & Brette F. (2008). t-tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovasc Res 77, 237-244. Ortega-Carnicer J, Bertos-Polo J & Gutirrez-Tirado C. (2001). Aborted sudden death, transient Brugada pattern, and wide QRS dysrrhythmias after massive cocaine ingestion. Journal of Electrocardiology 34, 345-349. Petitprez S, Jespersen T, Pruvot E, Keller DI, Corbaz C, Schlapfer J, Abriel H & Kucera JP. (2008). Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome. Cardiovasc Res 78, 494-504. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Brignole M, Giordano U, Giovannini T, Menozzi C, Bloise R, Crotti L, Terreni L & Schwartz PJ. (2000a). Clinical and Genetic Heterogeneity of Right Bundle Branch Block and ST-Segment Elevation Syndrome : A Prospective Evaluation of 52 Families. Circulation 102, 2509-2515. Priori SG, Napolitano C, Giordano U, Collisani G & Memmi M. (2000b). Brugada syndrome and sudden cardiac death in children. The Lancet 355, 808-809. Rajamani S, Anderson CL, Anson BD & January CT. (2002). Pharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation 105, 2830-2835. Resh MD. (2006). Palmitoylation of Ligands, Receptors, and Intracellular Signaling Molecules. Sci STKE 2006, re14-. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG & Kass RS. (2001). Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. The Journal of biological chemistry 276, 30623-30630. Roepke TK & Abbott GW. (2006). Pharmacogenetics and cardiac ion channels. Vascular Pharmacology 44, 90-106. Rossenbacker T & Priori SG. (2007). The Brugada syndrome. Curr Opin Cardiol 22, 163-170. Saksena S, Camm A, Boyden PA, Dorian P & Goldschlager N. (2005). Electrophysiological Disorders of the Heart. Sanguinetti MC, Jiang C, Curran ME & Keating MT. (1995). A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299-307. Sanguinetti MC & Tristani-Firouzi M. (2006). hERG potassium channels and cardiac arrhythmia. Nature 440, 463-469. Sasano T, Ueda K, Orikabe M, Hirano Y, Kawano S, Yasunami M, Isobe M, Kimura A & Hiraoka M. (2004). Novel C-terminus frameshift mutation, 1122fs/147, of HERG in LQT2: additional amino acids generated by frameshift cause accelerated inactivation. Journal of molecular and cellular cardiology 37, 1205-1211. Schulz D, Temporal S, Barry D & Garcia M. (2008). Mechanisms of voltage-gated ion channel regulation: from gene expression to localization. Cellular and Molecular Life Sciences (CMLS) 65, 2215-2231. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AH, Brink P, Wilde AAM, Toivonen L, Zareba W, Robinson JL, Timothy KW, Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze-Bahr E, Lehmann MH, Schwartz K, Coumel P & Bloise R. (2001). Genotype-Phenotype Correlation in the Long-QT Syndrome : Gene-Specific Triggers for Life-Threatening Arrhythmias. Circulation 103, 89-95. Scicluna B, Wilde A & Bezzina C. (2008). The Primary Arrhythmia Syndromes: Same Mutation, Different Manifestations. Are We Starting to Understand Why? Journal of Cardiovascular Electrophysiology 19, 445-452. Shimizu W. (2005). The long QT syndrome: therapeutic implications of a genetic diagnosis. Cardiovasc Res 67, 347-356. Shin DJ, Kim E, Park SB, Jang WC, Bae Y, Han J, Jang Y, Joung B, Lee MH, Kim SS, Huang H, Chahine M & Yoon SK. (2007). A novel mutation in the SCN5A gene is associated with Brugada syndrome. Life sciences 80, 716-724. Shirai N, Makita N, Sasaki K, Yokoi H, Sakuma I, Sakurada H, Akai J, Kimura A, Hiraoka M & Kitabatake A. (2002). A mutant cardiac sodium channel with multiple biophysical defects associated with overlapping clinical features of Brugada syndrome and cardiac conduction disease. Cardiovasc Res 53, 348-354. Smits JPP, Blom MT, Wilde AAM & Tan HL. (2008). Cardiac sodium channels and inherited electrophysiologic disorders: a pharmacogenetic overview. Expert Opinion on Pharmacotherapy 9, 537-549. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC & Keating MT. (2004). CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism. 119, 19-31. Steele DF, Eldstrom J & Fedida D. (2007). Mechanisms of cardiac potassium channel trafficking. J Physiol 582, 17-26. Tan BH, Iturralde-Torres P, Medeiros-Domingo A, Nava S, Tester DJ, Valdivia CR, Tusie-Luna T, Ackerman MJ & Makielski JC. (2007). A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia. Cardiovasc Res. Tan HL, Bezzina CR, Smits JPP, Verkerk AO & Wilde AAM. (2003). Genetic control of sodium channel function. Cardiovasc Res 57, 961-973. Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, van den Berg MP, Wilde AA & Balser JR. (2001). A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409, 1043-1047. Tateyama M, Liu H, Yang AS, Cormier JW & Kass RS. (2004). Structural Effects of an LQT-3 Mutation on Heart Na+ Channel Gating. Biophys J 86, 1843-1851. Thomas D, Kiehn J, Katus HA & Karle CA. (2003). Defective protein trafficking in hERG-associated hereditary long QT syndrome (LQT2): molecular mechanisms and restoration of intracellular protein processing. Cardiovasc Res 60, 235-241. Towbin JA BN. (2004). Human molecular genetics and the heart: Cardiac electrophysiology, from cell to bedside. 4th edn, pp. 444-461. W B SAUNDERS COMPANY. Towbin JA & Vatta M. (2001). Molecular biology and the prolonged QT syndromes. Am J Med 110, 385-398. Tseng GN. (2001). I(Kr): the hERG channel. Journal of molecular and cellular cardiology 33, 835-849. Uwais Mohamed CNSGP. (2007). Molecular and Electrophysiological Bases of Catecholaminergic Polymorphic Ventricular Tachycardia. Journal of Cardiovascular Electrophysiology 18, 791-797. Valdivia CR, Ackerman MJ, Tester DJ, Wada T, McCormack J, Ye B & Makielski JC. (2002). A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine, vol. 55. Elsevier Science. Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM & Nerbonne JM. (1999). Atrial L-Type Ca2+ Currents and Human Atrial Fibrillation. Circulation research 85, 428-436. Vandenberg JI, Torres AM, Campbell TJ & Kuchel PW. (2004). The HERG K+ channel: progress in understanding the molecular basis of its unusual gating kinetics. Eur Biophys J 33, 89-97. Vassort G AJ. (1994). Cardiac T-type calcium current: pharmacology and roles in cardiac tissues. J Cardiovasc Electrophysiol 5, 376-393. Vatta M, Dumaine R, Varghese G, Richard TA, Shimizu W, Aihara N, Nademanee K, Brugada R, Brugada J, Veerakul G, Li H, Bowles NE, Brugada P, Antzelevitch C & Towbin JA. (2002). Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet 11, 337-345. Viswanathan PC, Bezzina CR, George AL, Jr., Roden DM, Wilde AA & Balser JR. (2001). Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes. Circulation 104, 1200-1205. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ, Demolombe S, Probst V, Anselme F, Escande D, Wiesfeld AC, Pfeufer A, Kaab S, Wichmann HE, Hasdemir C, Aizawa Y, Wilde AA, Roden DM & Bezzina CR. (2008). Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 118, 2260-2268. Wei J, Wang DW, Alings M, Fish F, Wathen M, Roden DM & George AL, Jr. (1999). Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation 99, 3165-3171. Wilson VG & Rosas-Acosta G. (2005). Wrestling with SUMO in a New Arena. Sci STKE 2005, pe32-. Yan G-X & Antzelevitch C. (1999). Cellular Basis for the Brugada Syndrome and Other Mechanisms of Arrhythmogenesis Associated With ST-Segment Elevation. Circulation 100, 1660-1666. Yang Y, Xia M, Jin Q, Bendahhou S, Shi J, Chen Y, Liang B, Lin J, Liu Y, Liu B, Zhou Q, Zhang D, Wang R, Ma N, Su X, Niu K, Pei Y, Xu W, Chen Z, Wan H, Cui J, Barhanin J & Chen Y. (2004). Identification of a KCNE2 Gain-of-Function Mutation in Patients with Familial Atrial Fibrillation. The American Journal of Human Genetics 75, 899-905. Zou A, Xu QP & Sanguinetti MC. (1998). A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J Physiol 509 ( Pt 1), 129-137. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43090 | - |
dc.description.abstract | 遺傳性心因猝死症候群常造成非預期性的猝死,此疾病亦為年輕人死亡之重要原因之一。然而由於對其病理機轉的認知不足,目前可用的治療手段相當有限。在這一個世紀以來,多個基因已被發現與心律不整的致病機轉相關。本研究中,我們對台灣的QT過長症候群(Long QT syndrome, LQTS)以及Brugada syndrome患者進行基因分析後,在LQTS患者發現三個位於KCNH2的突變而在Brugada syndrome患者中找到三個位於SCN5A的基因突變,我們因而進一步研究其功能性變化以了解這些突變以及心律不整之間的關係。
KCNH2(或是hERG)的產物為一鉀離子通道(the rapid activating delayed rectifier potassium channel, IKr)。此鉀離子通道在心臟動作電位的後期扮演重要的角色,而我們所發現的三個KCNH2突變都會導致IKr減少,因而使動作電位延長以及心電圖上QT間距拉大。這三個KCNH2突變分別是p.N633D,p.R744fs, 以及 p.P923fs。 當將其表現在HEK293T細胞上時,p.N633D以及p.R744fs不會產生電流。p.P923fs所生成的電流密度則是比正常hERG離子通道有著顯著減少,而且p.P923fs的inactivation也較正常hERG離子通道來的快。在西方墨點法的分析中,我們發現p.R744fs無法被glycosylation,而這指出p.R744fs可能有著異常的細胞運送特性,而不會被細胞送上細胞膜。在共軛焦顯微鏡上我們也是看到同樣的現象。進一步地,我們發現當在p.R744fs的C端接上GFP時,glycosylation將可順利進行而如果GFP接在p.R744fs的N端時,glycosylation則不會進行。此外,藉由共同免疫沈澱法我們也發現p.R744fs無法有效地組合成四聚體。 SCN5A的產物是心臟的鈉離子孔道,它是目前已知造成Brugada syndrome的基因之一。至今已有超過百個SCN5A突變被報導 ,而一般認為Brugada syndrome的致病機轉便是來自於心臟鈉離子通道的功能異常。我們在台灣Brugada syndrome患者中找到三個SCN5A突變,分別是p.I848fs,p.R965C,以及 p.1876insM。其中p.I848fs產生的離子通道沒有功能,而p.R965C以及p.1876insM所產生的鈉離子通道具有與正常心臟鈉離子通道不同的電生理特性。p.R965C以及p.1876insM自inactivation回復的能力都比正常心臟鈉離子通道來的差,而且其steady state inactivation都比正常心臟鈉離子通道更偏向負電壓的方向(分別是9.4mV及 8.5mV)。此外p.1876insM的steady state activation也有改變。其比正常心臟鈉離子通道更偏正電壓的方向(7.69mV)。 隨著我們對於心律不整的治病基因的熟悉以及對致病機轉逐漸了解,將來我們將可以更容易也更加有效地診斷、治療甚至是預防心律不整。 | zh_TW |
dc.description.abstract | Hereditary sudden cardiac death syndromes are major causes of unexpected death especially in young individuals. However, current treatment modalities for these syndromes are not satisfactory, presumably due to poor understanding of the underlying mechanisms that lead to the pathogenesis of these diseases. For the past decades, several responsible genes for these syndromes have been identified and studied. In our studies, we screened patients with LQTS or Brugada syndrome in Taiwan and identified three mutations in KCNH2 responsible for LQTS and three mutations in SCN5A responsible for Brugada syndrome. Functional studies were performed to elucidate the possible mechanisms of the disease-causing mutations.
KCNH2, or hERG, encodes the pore forming subunit of the rapid activating delayed rectifier potassium channel (IKr), which plays important roles in the repolarization process during the late phase of cardiac action potential. The three LQTS-related mutations of the KCNH2 genes all lead to a reduced IKr and might be related to the prolongation of action potential duration and the prolongation of QT interval in ECG. These mutations are p.N633D, p.R744fs, and p.P923fs. When expressed in HEK293T cells, p.N633D and p.R744fs channels displayed no current while p.P923fs channel elicited current with significantly lower current density and faster inactivation kinetics. In western blotting analysis, pR744fs was the only one with glycosylation defect. In confocal microscopic studies, p.R744fs-GFP also revealed trafficking defect. However, p.R744fs-GFP differed from pR744fs in being fully glycosylated while p.R744fs fusion with GFP at the N-terminus revealed glycosylation defect. In co-immunoprecipitation studies, the assembling capacity of p.N633D, and p.P923fs were intact p.R744fs failed to interact with neither WT nor itself to form tetramers. SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and showed that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM). Their electrophysiological properties were altered in patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4mV and 8.5mV respectively), and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69mV). With increasing understanding of the underlying mechanisms of hereditary sudden cardiac death, we expect advances in the diagnosis, treatment, and prevention of these syndromes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:36:25Z (GMT). No. of bitstreams: 1 ntu-98-D93443007-1.pdf: 6067386 bytes, checksum: 6386885463105018d7d0020633ba0bd1 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審書............................................I
謝辭.....................................................II 中文摘要.................................................III ABSTRACT................................................ IV CHAPTER 1 1 1.1 THE FUNCTION OF THE HEART 1 1.2 Mechanisms of cardiac arrhythmia 3 1.3 Cardiac channelpathies 7 1.3.1 Cardiac sodium channel 7 1.3.2 Cardiac calcium channels 9 1.3.3 Cardiac potassium channel 14 1.4 Briefing of the studies 17 CHAPTER 2 18 2.1 Cases collection and Genetic analysis 18 2.2 Cloning of the KCNH2 and SCN5A 18 2.2.1 Reverse transcription reaction 18 2.2.2 Cloning of KCNH2 19 2.2.3 Cloning of SCN5A and SCN1B 19 2.3 Site-directed mutagenesis 20 2.4 Culture and transfection of HEK293T cells 20 2.5 Patch clamp and data analysis 20 2.5.1 Patch clamp 20 2.5.2 Analysis of data of hERG current 21 2.5.3 Analysis of data of cardiac sodium current 21 2.6 Immunocytochemistry 22 2.7 Confocal imaging 22 2.8 Cell lysis and proteins extraction 22 2.9 Co-immunoprecipitation of hERG and hERG-GFP 22 2.10 Western blotting 23 2.11 Surface biotinylation reaction 23 2.12 Data management and statistical analysis 24 2.13 Reagents and Buffers 24 CHAPTER 3 26 3.1 Briefing 26 3.2 Background 26 3.2.1 KCNH2 26 3.2.2 Long QT syndrome 28 3.3 Results 30 3.3.1 Genetic analysis 30 3.3.2 ECG data of three LQTS patients carried KCNH2 mutations 30 3.3.3 Activation kinetics of WT and mutant hERG channels 33 3.3.4 Kinetics of deactivation and recovery from inactivation 34 3.3.5 Inactivation properties of WT hERG channel and p.P923fs hERG channel 34 3.3.6 Western blotting and co-immunoprecipitation 34 3.3.7 Pharmacological rescue of trafficking deficient p.R744fs hERG channel 36 3.3.8 Intracellular trafficking analysis by confocal imaging 36 3.4 Discussion 38 CHAPTER 4 42 4.1 Briefing 42 4.2 Backgrounds 42 4.2.1 SCN5A 42 4.2.2 Brugada syndrome 43 4.3 Results 47 4.3.1 Genetic analysis and the electrocardiographic (ECG) characteristics 47 4.3.2 Sodium current elicited by WT and mutant cardiac sodium channels 47 4.3.3 Voltage dependent steady state activation and steady state inactivation 48 4.3.4 Time constants of fast inactivation 52 4.3.5 Recovery from inactivation and development of slow inactivation 52 4.3.6 Cell surface protein biotinylation and Western blotting 53 4.3.7 Intracellular trafficking analysis by confocal imaging 53 4.4 Discussion 55 CHAPTER 5 58 4.1 CONCLUSIONS AND PERSPECTIVES 58 4.2 PUBLICATION LISTS 62 CHAPTER 6 63 | |
dc.language.iso | en | |
dc.title | 台灣地區遺傳性心因性猝死相關離子孔道基因突變的功能性研究 | zh_TW |
dc.title | Functional Studies on Ion Channel Mutations in Hereditary Sudden Cardiac Death Syndrome in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蘇銘嘉,林俊立,楊徫勛,蘇怡寧 | |
dc.subject.keyword | QT過長症候群,Brugada 症候群,膜片箝制,KCNH2,SCN5A,蛋白質移動, | zh_TW |
dc.subject.keyword | Long QT Syndrome (LQTS),Brugada syndrome,patch clamp,KCNH2,SCN5A,protein trafficking, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 5.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。