請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43047
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭博成 | |
dc.contributor.author | Yin-Shan Li | en |
dc.contributor.author | 黎穎姍 | zh_TW |
dc.date.accessioned | 2021-06-15T01:34:24Z | - |
dc.date.available | 2011-07-27 | |
dc.date.copyright | 2009-07-27 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-17 | |
dc.identifier.citation | [1] http://en.wikipedia.org/wiki/IBM_305 (2007)
[2] http://www.magneticdiskheritagecenter.org/ (2006) [3] http://big5.nikkeibp.com.cn/news/elec/29588-200412160113.html (2004) [4] A. Takeo, Y. Takahashi, Y. Tanaka, K. Miura, H. Muraoka, and Y. Nakamura, J. Appl. Phys. 87, 4987 (2000) [5] 楊志信,台灣資訊儲技術協會會刊,940403,1 (2005) [6] B. D. Cullity, “ INTRODUCTION TO MAGNETIC MATERIALS ”, Massachusetts: Addison-Wesley, 1972 [7] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998) [8] S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997) [9] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999) [10] M. S. Patwari, and R. H. Vistoria, IEEE Trans. Magn. 40, 247 (2004) [11] S. Batra, J. D. Hannay H. Zhou, and J. S. Goldberg, ibid 40, 319 (2004) [12] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J.-U Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000) [13] S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977) [14] J. J. Miles, D. McA. McKirdy, R. W. Chantrell, and R. Wood, IEEE Trans. Magn. 39, 1876 (2003) [15] M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005) [16] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J.-U Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000) [17] D. Weller and M. F. Doerner, Annu. Rev. Mater. Res. 30, 611 (2000) [18] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004) [19] J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, Appl. Phys. Lett. 90, 042508 (2007) [20] C. C. Chiang, Chih-Huang Lai, and Y. C. Wu, Appl. Phys. Lett. 88, 152508 (2006) [21] W. L. Bragg and E. J. Williams, Proc. Roy. Soc. 145A, 699-730 (1934) [22] J. L. Murray, L. H. Bennett, and H. Baker, “BINARY ALLOY PHASE DIAGRAMS”, p.791 (1986) [23] R. A. MaCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966) [24] Q. F. Xiao, E. Bruck, Z. D. Zhang, F. R. de Boer and K. H. J. Buschow, J. Appl. Phys. 91, 304 (2002) [25] Y. Iijima, O. Taguchi, and K. Hirano, Trans. Japan Inst. Met 21, 366 (1980) [26] R. A. MaCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966) [27] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, and K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001) [28] N. I. Vlasova, G. S. Kandaurova, and N. N. Shchegoleva, J. Magn. Magn. Mater. 222, 138-158 (2000) [29] P. S. Rudman and B. L. Avebrach, “X-ray determination of order and atomic sizes in Co-Pt sold solutions” Acta Met. 5, 65-73 (1957) [30] J. A. Christodoulides and P. Farber, IEEE. Trans. Magn. 37, 1292 (2001) [31] J. Penuelas, C. Andreazza-Vignolle, P. Andreazza, A. Ouerghi, and N. Bouet, Surface Science 602, 545-551 (2008) [32] J. Orehotsky and J. L. Orehotsky, J. Appl. Phys. 61, 1210 (1987) [33] K. Barmak, R. A. Ristau, K. R. Coffey, M. A. Parker, and J. K. Howard, J. Appl. Phys. 79, 5330 (1996) [34] K. Barmak, J. Kim, and S. Shell, Appl. Phys. Lett. 80, 4268 (2002) [35] D. Y. Oh and J. K. Park, J. Appl. Phys. 97, 10N105 (2005) [36] W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, and H. Y. Lee, J. Magn. Magn. Mater. 303, e246-e246 (2006) [37] F. T. Yuan, H. W. Chang, W. M. Liao, S. N. Hsiao, S. K. Chen, Y. D. Yao, and H. Y. Lee. J. Appl. Phys. 101, 09K526 (2007) [38] T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Mater. 266, 79 (2003) [39] H. Yamaguchi, O. Kitakami, S. Okamoto, Y. Shimada, K. Oikawa, and K. Fukamichi, Appl. Phys. Lett. 79, 2001 (2001) [40] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, and K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001) [41] X. H. Xu, T. Jin, X. L. Li, F. Wang, F. X. Jiang, Z. G. Yang, and H. S. Wu, Mater. Chem. Phys. 98, 447-449 (2006) [42] W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, S. N. Hsiao, and W. C. Chang, J. Magn. Magn. Mater. 304, e255-e257 (2006) [43] E. Manios, V. Karanasos, D. Niarchos, and I. Panagiotopoulos, J. Magn. Magn. Mater. 272-276, 2169 (2004) [44] X.-H. Xu, Z.-G. Yang, and H.-S. Wu, J. Magn. Magn. Mater. 295, 106 (2005) [45] H. Wang, S. X. Xue, F. J. Yang, H. B. Wang, X. Cao, J. A. Wang, Y. Gao, Z. B. Huang, C. P. Yang, W. Y. Cheung, S. P. Wong, Q. Li, and Z. Li, Thin Solid Films, 505, 77 (2006) [46] J.-J. Delaunay, T. Hayashi, M. Tomita, S. Hirono, and S. Umemura, Appl. Phys. Lett. 71, 3427 (1997) [47] C. Chen, O. Kitakami, S. Okamoto, and Y. Shimada, Appl. Phys. Lett. 76, 3218 (2000) [48] V. Karanasos, I. Panagiotopoulos, and D. Niarchos, J. Magn. Magn. Mater. 249, 471 (2002) [49] S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, and Y. D. Yao, J. Appl. Phys. 85, 4334 (1999) [50] L. Castaldi, K. Giannakopoulos, A. Travlos, and D. Niarchos, Appl. Phys. Lett. 85, 2854 (2004) [51] A. Ouerghi, J. Penuelas, C. Andreazza-Vignolle, P. Andreazza, N. Bouet, and H. Estrade-Szwarckopf, J. Appl. Phys. 100, 124310 (2006) [52] C. J. Lin et and G. Gorman, Appl. Phys. Lett. 61, 1600 (1992) [53] http://nems.ntu.edu.tw/web_nems/document/general/NMC-W-8009_WEB.pdf [54] B. D. Cullity and S. R. Stock, “ELEMENTS OF X-ray DIFFRACTION”, p. 170, 3rd edition, Prentice Hall (2001) [55] Q. F. Xiao, E. Bruck, Z. D. Zhang, F. R. de Boer, and K. H. J. Buschow, J. Appl. Phys. 91, 8819 (2002) [56] B. D. Cullity, and S. R. Stock, “ELEMENTS OF X-ray DIFFRACTION”, 3rd edition, Prentice Hall (2001) [57] J. Mallet, K. Yu-Zhang, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, and L. Piraux, J. Phys. D 38, 909 (2005) [58] M. Lu, T. Song, T. Zhou, J. Wang, S. Piramanayagam, W. Ma, and H. Gong, J. Appl. Phys. 95, 6735 (2004) [59] Michael F. Toney, Wen-Yaung Lee, Jonathan A. Hedstrom, and Andrew Kellock, J. Appl. Phys. 95, 6735 (2004) [60] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 93, 9902 (2003) [61] C. J. Lin and G. L. Gorman, Appl. Phys. Lett. 61, 1600 (1992) [62] S. Honda, J. Ago, M. Nawate, and N. Morita, IEEE Trans. Magn. 28, 2677 (1992) [63] H.Pfeiffer, Phys.Status Solidi A 118, 295 (1990) [64] D. A. Porter and K. E. Easterling,”PHASE TRANSFORMATIONS IN METALS AND ALLOYS”, p. 46, 2rd edition (1981) [65] S.-E. Park, P.-Y. Jung, and K.-B. Kim, J. Appl. Phys. 77, 2641 (1995) [66] Y. H. Fang, P. C. Kuo, P. L. Lin, S. C. Chen, C. T. Kuo,and G. P. Lin, J. Magn. Magn. Mater. 320 3032-3035 (2008) [67] P. Brault, A. L. Thomann, C. Andreazza-Vignolle, Surface Science 406, L597 (1998) [67] M. Zinke-Allmang, L. C. Feldman, M. H. Grabow, Surface Science Report 16, 377 (1992) [69] P. Deltour, J.-L. Barrat, P. Jensen, Physical Review Letter 78, 4597 (1997) [70] C. Kittel, Phys. Rev. 70, 965 (1946) [71] William D. Callister, Jr., “MATERIALS SCIENCE AND ENGIN EERING AN INTRODUCTION”, p. 85, SIXTH EDIYION (2003) [72] H. Wang, F. J. Yang, S. X. Xue, Q. Mo, H. B. Wang, Q. Li, and Z. Y. Li, Appl. Phys. A 88, 775-779 (2007) [73] S. X. Xue, H. Wang, H. B. Wang, F. J. Yang, J. A. Wang, X. Cao, Y. Gao, Z. B. Huang, Z. Y. Li, Q. Li, and S. P. Wong, J. Magn. Magn. Mater. 306 332-336 (2006) [74] X. H. Xu, Z. G. Yang, and H. S. Wu, J. Magn. Magn. Mater. 295 106-109 (2005) [75] J. L. Murray, L. H. Bennett, and H. Baker, “BINARY ALLOY PHASE DIAGRAMS”, p.16 (1986) [76] J. L. Murray, L. H. Bennett, and H. Baker, “BINARY ALLOY PHASE DIAGRAMS”, p.57 (1986) [77] 孫安正,”博士論文:低序化溫度L10 FePt合金薄膜的製備及其應用於垂直磁記錄媒體之研究”,國立台灣大學 (2005) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43047 | - |
dc.description.abstract | 本研究以直流磁控濺鍍的方式,於室溫下在玻璃基板上鍍製CoPt奈米薄膜,以及之後在玻璃基板與CoPt膜層之間引入Ag底層,形成CoPt/Ag奈米複合薄膜,並探討當CoPt膜厚小於20 nm,Ag底層厚度對CoPt薄膜之顯微結構、磁性質及其易磁化軸方向的影響。
我們發現CoPt單層薄膜之起始序化溫度介於500∼600℃之間。由TEM平面明視野影像可以看到,隨著CoPt厚度的增加,其表面型態由不連續島狀結構逐漸轉變為連續膜,從MFM圖可以發現於700℃退火30分鐘之CoPt(7.5 nm)為單磁區狀態,在此單磁區狀態其矯頑磁力隨顆粒直徑的變化符合單磁區理論。當CoPt厚度為1 nm時,由於大部分的顆粒尺寸小於臨界直徑Dp,因此產生超順磁效應,造成整體薄膜之矯頑磁力的下降,大致上,於700℃退火30分鐘之CoPt單層薄膜的易磁化軸方向呈現random orientation。 在CoPt/Ag薄膜方面,當CoPt厚度較厚時,Ag底層的加入對CoPt之序化度以及垂直膜面磁性質才有所幫助。經由VSM的量測,我們可以大略看出隨著CoPt及Ag底層厚度的增加,其磁性質的變化如下:對於600℃退火30分鐘之CoPt/Ag薄膜而言,其矯頑磁場隨著CoPt和Ag底層厚度的增加呈現先升後降的趨勢,易磁化軸方向隨著CoPt厚度的增加先由random orientation逐漸轉向垂直膜面方向,再逐漸轉回random orientation;對於700℃退火30分鐘之CoPt/Ag薄膜,其矯頑磁場隨著CoPt和Ag底層厚度的增加而增加,易磁化軸方向隨著CoPt厚度的增加由random orientation逐漸轉向垂直膜面方向,顯示加入Ag底層後,CoPt/Ag薄膜的垂直膜面磁性質得到提升。 | zh_TW |
dc.description.abstract | In this study, the CoPt films were deposited on glass substrates at room temperature by dc magnetron sputtering and introduced Ag underlayer to form CoPt/Ag nanocomposite films. The effects of Ag underlayer thickness on the microstructure, magnetic properties, and magnetic easy axis orientation of CoPt films were investigated as the thickness of CoPt films is less than 20 nm.
The starting ordering temperature of the CoPt thin films is between 500 to 600 °C. From TEM bright field image, it can be seen that the surface image of CoPt formed discrete islands, and gradually change to continuous film as the CoPt thickness increase. After annealed at 700℃ for 30 minutes, the single domain state is found by the observation of MFM images at 7.5 nm CoPt. At single domain state, the variation of coercivity with particle size agree with the theory of single domain particles. Due to the most of particle size are smaller than critical particle diameter Dp at 1 nm CoPt, the effect of superparamagnetism causes the decrease of coercivity. Approximately, the orientation of magnetic easy axis of CoPt thin films is random. For CoPt/Ag thin films, The insert of Ag underlayer can help the property of ordering degree and perpendicular anisotropy as CoPt is thicker. By the measurement of VSM, we find the changes of magnetic properties with the increase of CoPt and Ag underlayer thickness are as following : After annealing at 600℃, firstly the coercivity of CoPt thin films increase with CoPt and Ag underlayer thickness, and then decrease. The orientation of magnetic easy axis firstly from random orientation turn to out-of-plane orientation, and then turn back to random orientation as the CoPt thickness is increased; After annealing at 700℃, the coercivity of CoPt thin films increases with CoPt and Ag underlayer thickness. The orientation of magnetic easy axis from random orientation turn to out-of-plane orientation gradually as the CoPt thickness is increased. The phenomenon reveal that the property of perpendicular anisotropy were promote As the Ag underlayer added. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:34:24Z (GMT). No. of bitstreams: 1 ntu-98-R96527062-1.pdf: 8910256 bytes, checksum: 3e38558ca483e20f70e6f5aa99403294 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………I
誌謝……………………………………………………II 摘要……………………………………………………IV Abstract………………………………………………V 目錄……………………………………………………VII 圖目錄…………………………………………………X 表目錄…………………………………………………XV 第一章、前言…………………………………………1 第二章、基礎理論與文獻回顧………………………3 2-1 基礎理論…………………………………………3 2-1-1 基本磁記錄原理………………………………3 2-1-2 水平磁紀錄……………………………………4 2-1-3 垂直磁紀錄……………………………………5 2-1-4 顆粒尺寸與矯頑磁力的關係…………………5 2-1-5 磁紀錄材料……………………………………6 2-1-6 CoPt的序化……………………………………6 2-1-7 CoPt序化度的計算……………………………8 2-1-8 顆粒狀磁性薄膜………………………………9 2-1-9 自我聚集磁性奈米顆粒薄膜…………………9 2-2 文獻回顧…………………………………………9 2-2-1 CoPt薄膜………………………………………9 2-2-2 顆粒狀磁性薄膜………………………………13 2-2-3 自我聚集磁性奈米顆粒薄膜…………………14 2-3 研究方向…………………………………………15 第三章、實驗方法……………………………………20 3-1 實驗流程…………………………………………20 3-2 靶材選取…………………………………………20 3-3 基板選取與基板清洗……………………………21 3-3-1 基板選取………………………………………21 3-3-2 基板清洗………………………………………21 3-4 實驗裝置及薄膜製備……………………………22 3-4-1 真空磁控濺鍍系統……………………………22 3-4-2 薄膜濺鍍………………………………………22 3-4-3 退火步驟………………………………………23 3-5 磁性質分析………………………………………24 3-6 微磁結構分析……………………………………24 3-7 化學組成分析……………………………………25 3-8 薄膜厚度分析……………………………………25 3-9 晶體結構分析……………………………………25 3-9-1 X光繞射分析……………………………………26 3-9-2 TEM微結構觀察…………………………………26 第四章、實驗結果與討論……………………………35 4-1 單層CoPt合金薄膜………………………………35 4-1-1 單層CoPt合金薄膜製作………………………35 4-1-2 單層CoPt合金薄膜厚度對微結構的影響……35 4-1-3 單層CoPt合金薄膜的磁性質分析……………36 4-1-4 單層CoPt合金薄膜的TEM微結構分析…………39 4-1-5 單層CoPt合金薄膜的MFM微磁結構分析………41 4-2 Ag底層對CoPt合金薄膜的影響…………………41 4-2-1 Ag底層製作……………………………………42 4-2-2 Ag底層對CoPt合金薄膜微結構的影響………42 4-2-3 Ag底層對CoPt合金薄膜磁性質的影響………45 4-2-4 CoPt/Ag合金薄膜的TEM微結構觀察…………49 第五章、結論…………………………………………89 參考文獻………………………………………………90 | |
dc.language.iso | zh-TW | |
dc.title | 在玻璃基板上成長之CoPt及CoPt/Ag薄膜的微結構與磁性質研究 | zh_TW |
dc.title | The study of microstructures and magnetic properties of CoPt and CoPt/Ag thin films on glass | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許仁華,張慶瑞,姚永德,林克偉 | |
dc.subject.keyword | 鈷鉑合金,膜厚小於20nm,垂直膜面磁性質,Ag底層, | zh_TW |
dc.subject.keyword | CoPt alloy,the thickness is less than 20nm,perpendicular anisotropy,Ag underlayer, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 8.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。