請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43046
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林長平(Chan-Pin Lin) | |
dc.contributor.author | Yao-Jheng Huang | en |
dc.contributor.author | 黃耀徵 | zh_TW |
dc.date.accessioned | 2021-06-15T01:34:21Z | - |
dc.date.available | 2009-07-22 | |
dc.date.copyright | 2009-07-22 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-17 | |
dc.identifier.citation | 1. 車海彥、羅大全、符瑞益、葉莎冰、吳雲峰. 2009. 海南長春花黃化病植原體的16S rDNA序列分析研究. 植物病理學報. 39: 212-216.
2. 林翠淳. 1996. 植物菌質體廣效型PCR引子之評估及疑似梨衰弱病病原菌質體之檢測. 國立台灣大學植物病理與微生物學研究所碩士論文。 3. 陳武揚、顏義峰、石憲宗、林長平. 2006. 翠菊黃萎病之診斷鑑定與防治. 植物檢疫病蟲害通緝摺頁 3. 行政院農委會動植物防疫檢疫局出版。 4. 陳俊位、林俊義、許振川. 1997. 台灣日日春病害之發生. 台中區農業改良場研究彙報 54: 47-57. 5. 蔡宏、孔寶華、陳海如. 2003. 長春花黃化質原體 (PY) 株系的檢測與鑑定. 微生物學報 43: 116-119. 6. 劉淑玲. 2007. 台灣梨衰弱病兩種植物菌質體之探討. 國立台灣大學植物病理與微生物學研究所碩士論文。 7. Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687-703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA. 8. Alma, A., Bosco, D., Danielli, A., Bertaccini, A., Vibio, M., and Arzone, A. 1997. Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball teared on healthy plants. Int. Mol. Biol. 6: 115-121. 9. Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W., and Hogenhout, S.A. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188: 3682-3696. 10. Batjer, L. P., and Schneider, H. 1960. Relation of pear decline to rootstocks and sieve-tube necrosis. Proc. Amer. Soc. Hort. Sci. 76: 85-97. 11. Beanland, L., Hoy, C. W., Miller, S. A., and Nault, L. R. 1999. Leafhopper (Homoptera: Cicadellidae) transmission of aster yellows phytoplasma: does gender matter? Environ. Entomol. 28: 1101-1106. 12. Beanland, L., Hoy, C. W., Miller, S. A., and Nault, L. R. 2000. Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Ann. Entomol. Soc. Am. 93: 271-276. 13. Beanland, L., Noble, R., and Wolf, T. K., 2006. Spatial and temporal distribution of North American grapevine yellows disease and of potential vectors of the causal phytoplasmas in Virginia. Environ. Entomol. 35: 332-344. 14. Black, L. M. 1943. Some properties of aster-yellows virus. Phytopathology 33: 2. 15. Blattner, F. R., Plunkett, G. III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose D. J., Mau, B., and Shao, Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462. 16. Borth, W. B., Fukuda, S. K., Hamasaki, R. T., Hu, J. S., and Almeida, R. P. P. 2006. Detection, characterization and transmission by Macrosteles leafhoppers of watercress yellows phytoplasma in Hawaii. Ann. Appl. Biol. 149: 357-363. 17. Bosco, D., Galetto, L., Leoncini, P., Saracco, P., Raccah, B., and Marzachì, C. 2007. Interrelationship between “Candidatus Phytoplasma asteris” and it’s leafhopper vectors (Homoptera: Cicadellidae). J. Econ. Entomol. 100: 1504-1511. 18. Braun, E. J., and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66: 598-607. 19. Braun, E. J., and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedling. Phytopathology 68: 1733-1737. 20. Carraro, L., Loi, N., and Ermacora, P. 2001a. The “life cycle” of pear decline phytoplasma in the vector Cacopsylla pyri. Plant Pathol. 83: 87-90. 21. Carraro, L., Osler, R., Loi, N., Ermacora, P., and Refatti, E. 1998b. Transmission of European stone fruit yellows phytoplasmas by Cacopsylla pruni. J. Plant Pathol. 80: 233-239. 22. Cirillo, V.P. 1993. Transport systems in mycoplasmas. Subcell. Biochem. 20: 293-310. 23. Citti, C., Marechal-Drouard, L., Saillard, C., Weil, J. H., and Bove, J. M. 1992. Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J. Bacteriol. 174: 6471-6478. 24. Davis, D. L., Barbara, D. J., and Clark, M. F. 1995. The detection of MLOs associated with pear decline in pear trees and pear psyllids by polymerase chain reaction. Acta. Hortic. 386: 484-488. 25. Davis, R. E., Dally E. L., Guvdersen, D. E., Lee, I. M., and Habili, N. 1997. Candidatus phytoplasma australiense, a new phytoplasma toxan associated with Australian grapevine yellows. Int. J. Syst. Bacteriol. 47: 262-269. 26. Deng, S., and Hiruki, C. 1991. Amplification of 16S rRNA gene from culturable and nonculturable molecules. J. Microbiol. Meth. 14: 53-61. 27. Dimri, B. P., Khan, M. N. A., and Narayana, M. R. 1975. Systematic cultivation of Catharanthus roseus (Vinca rosea Linn) G. Don, a plant with promise in cancer [Culture]. Agric. Agroind. J. 8: 13-16. 28. Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Japan 33: 259-266. 29. Ebbert, M.A., and Nault, L.R. 1994. Improved overwintering ability in Dalbulus maidis (Homoptera: Cicadellidae) vectors infected with Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae). Environ. Entomol. 23: 634-644. 30. Firrao, G., Garcia-Chapa, M. and Marzachi, C. 2007. Phytoplasmas: genetics, diagnosis and relationships with the plant and insect host. Front. BioSci. 12: 1353-1375. 31. Frisinghelli, C., Delaiti, L., Grando, M.S., Forti, D., and Vindimian, M. E. 2000. Cacopsylla costalis (Flor, 1861), as a vector of apple proliferation in Trentino. J. Phytopathol. 148: 425-431. 32. Garnier, M., Foissac, X., Gaurivaud, P., Laigret, F., Renaudin, J., Saillard, C., and Bove, J. M. 2001. Mycoplasmas, plants, insect vectors: a matrimonial triangle. Life Sciences 324: 923-928. 33. Gaurivaud, P., Laigret, F., Garnier, M. and Bove, J. M. 2000. Fructose utilization and pathogenicity of Spiroplasma citri: characterization of the fructose operon. Gene 252: 61-69. 34. Gundersen, D. E., and Lee, I. M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediter. 35: 144-151. 35. Gundersen, D. E., Lee, I. M., Chang, C. J., and Davis, R. E. 1994. RFLP analyses of ribosomal protein genes reveal strain diversity in MLO 16S rRNA groups I and III. Phytopathology 84: 1128. 36. Hanboonsong, Y., Choosai, C., Panyim, S., and Damak, S., 2002. Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hirogliphicus (Matsumura). Int. Mol. Biol. 11: 97-103. 37. Hanboonsong, Y., Ritthison, W., Choosai, C., and Sirithorn, P. 2006. Transmission of sugarcane white leaf phytoplasma by Yamatotettix flavovittatus, a new leafhopper vector. J. Econ. Entomol. 99: 1531-1537. 38. Hatta, B. G., and Francki, T. 1980. Purification and some properties of reovirus – like particles from leafhoppers Cicadulina bimaculata and their possible involvement in wallaby ear disease of maize. Virology. New York, Academic Press, 100: 300-313. 39. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11: 1026-1030. 40. Hogenhout, S. A., Oshima K., Ammar el-D., Kakizawa S., Kingdom H. N., and Namba S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9(4): 403-423. 41. Hou, R. F., and Brooks, M. A. 1977. Effects of cholesterol on growth and development of the aster leafhopper, Macrosteles fascifrons Stal (Hemiptera: Deltocephalidae). Appl. Ent. Zool. 12: 248-254. 42. Inamine, J. M., Ho, K. C., Loechel, S., and Hu, P. J. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and Mycoplasma gallisepticum. J. Bacteriol. 172: 504-506. 43. IRPCM Phytoplasma/ Spiroplasma Working Team-Phytoplasma Taxonomy Group. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1245-1255. 44. Jarausch, B., Schwind, N., Jarausch, W., Krczal, G., Dickler, E., and Seemüller, E. 2003. First report of Cacopsylla picta as a vector of apple proliferation phytoplasma in Germany. Plant Dis. 87: 101. 45. Kawakita, H., Saiki, T., Wei, W., Mitsuhashi, W., Watanabe, K., and Sato, M. 2000. Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90: 909-914. 46. Kessler, A., Halitschke, R., and Baldwin, I. T. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305: 665-668. 47. Kirkpatrick, B. C., Stenger, D. C., Morris, T. J., and Purcell, A. H. 1987. Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238: 197-200. 48. Ko, H. C., and Lin, C. P. 1994. Development and Application of cloned DNA probe for a mycoplasmalike organism associate with sweet potato withes’ -broom. Phytopathology 84: 468-473. 49. Lee, C., Kim, J., and Shin, S. G., Hwang, S. 2008. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273-280. 50. Lee, I. M., Bottner, K. D., Secor, G., and Rivera-Varas, V. 2006a. ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int. J. Syst. Evol. Microbiol. 56: 1593-1597. 51. Lee, I. M., Davis, R. E., Chen, T. A., Chiykowski, L. N., Fletcher, J., Hiruki, C., and Schaff, D. A. 1992. A genotype-based system for identification and classification of mycoplasmalike organisms (MLOs) in the Aster yellows MLO strain cluster. Phytopathology 82: 977-986. 52. Lee, I. M., Davis, R. E., and Gundersen-Rindal, D. E. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-255. 53. Lee, I. M., Davis, R. E., and Hiruki, C. 1991. Genetic relatedness among clover proliferation mycoplasmalike organisms (MLOs) and other MLOs investigated by nucleic acid hybridization and restriction fragment length polymorphism analyses. Appl. Environ. Microbiology 57: 3565-3569. 54. Lee, I. M., Davis, R. E., Sinclair, W. A. Dewitt, N. D., and Conti, M. 1993. Genetic relatedness of mycoplasmalike organisms detected in Ulmus spp. In the United States and Italy by means of DNA probes and polymerase chain reactions. Phytopathology 83: 829-833. 55. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I.-M. 1998. Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48: 1153-1169. 56. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., Bottner, K. D., Marcone, C., and Seemüller, E. 2004. ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol. 54: 1037-1048. 57. Lee, I. M., Martini, M., Bottner, K. D., Dane, R. A., Black, M. C., and Troxclair, N. 2003. Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology 93: 1368-1377. 58. Lee, I. M., Zhao, Y., and Bottner, K. D. 2006b. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma groups. Mol. Cell. Probes. 20: 87-91. 59. Lepka, P., Stitt, M., Moll, E., and Seemuller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59-68. 60. Lim, P. O., and Sears, B. B. 1991. The genome size of a plant-pathogenic mycoplasmalike organism resembles those of animal mycoplasmas. J. Bacteriol. 173: 2128-2130. 61. Lim, P. O., and Sears, B. B. 1992. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J. Bacteriol. 174: 2606-2611. 62. Lin, C. P., and Chen, T. A. 1985. Monoclonal antibodies against the aster yellows agent. Science 227: 1233-1235. 63. Lin, T. C., and Lin, C. P. 1998. Evaluation of universal PCR primers for the detection of phytoplasmas. Plant Pathol. Bull. 7: 33-42. 64. Liu, H. W., Goodwin, P. H., and Kuske, C. R. 1994. Quantification of DNA from the aster yellow mycoplasmalike organism in aster leafhoppers (Macrosteles fascifrons Stal) by a competitive polymerase chain reaction. Syst. Appl. Microbiol. 17: 274-280. 65. Madden, L., and Nault, L. R. 1983. Differential pathogenicity of corn stunting mollicutes to leafhopper vectors in Dalbulus and Baldulus species. Phytopathology 73: 1608-1614. 66. Madden, L., Nault, L. R., Heady, S. E., and Styer, W. E. 1984. Effect of maize stunting mollicutes on survival and fecundity of Dalbulus leafhopper vectors. Ann. Appl. Biol. 105: 431-441. 67. Maramorosch, K. 1958. Beneficial effect of virus diseased plants on non-vector insects. Tijdschr. Plantenziekten 63: 383-391. 68. Marcone, C., Lee, I. M., Davis, R. E., Ragozzino, A., and Seemüller, E. 2000. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int. J. Syst. Evol. Microbiol. 50: 1703-1713. 69. Martini, M., Lee, I. M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N. A., Carraro, L., Marcone, C., and Osler, R. 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int. J. Syst. Evol. Microbiol. 57: 2037-2051. 70. Marzachı`, C., and Bosco, D. 2005. Relative quantification of chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol. Biotechnol. 30: 117-127. 71. Marzachı`, C., Veratti, F., and Bosco, D. 1998. Direct PCR detection of phytoplasmas in experimentally infected insects. Ann. Appl. Biol. 133: 45-54. 72. Mayer, C. J., Vilcinskas, A., and Gross, J. 2008. Pathogen-induced release of plant allomone manipulates vector insect behavior. J. Chem. Ecol. 34: 1518-1522 73. McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiykowski, L. N., Cousin, M. T., Dale De Leeuw, G.T.N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C., Suguira, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemüller, E. 1989. Plant diseases associated with mycoplasma-like organisms. Pages 546-640 in: The Mycoplasmas (Whitcomb, R.F. and Tully, J.G., eds). Academic Press, San Diego, CA. 74. Melamed, S., Tanne, E., Ben-Haim, R., Edelbaum, O., Yogev, D., and Sela, I. 2003. Identification and characterization of phytoplasmal genes, employing a novel method of isolating phytoplasmal genomic DNA. J. Bacteriol. 185: 6513-6521. 75. Munyaneza, J. E., Crosslin, J. M., and Upton, J. E. 2006. Beet leafhopper (Hemiptera: Cicadellidae) transmits the Columbia Basin potato purple top phytoplasma to potatoes, beets, and weeds. J. Econ. Entomol. 99: 268-272. 76. Murray, R. G., and Stackebrandt, E. 1995. Taxonomic note: implementation of provisional status Candidatus for incompletely described prokaryotes. Int. J. Syst. Bacteriol. 45: 186-187. 77. Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133-147. 78. Namba, S., Kato, S., Iwanami, S., Oyaizu, H., Shiozawa, H., and Tsuchizaki, T. 1993. Detection and differentiation of plant-pathogenic mycoplasmalike organisms using polymerase chain reaction. Plantpathology 83: 786-91. 79. Omar, A. F., Emeran, A. A., and Abass, J. M. 2008. Detection of phytoplasma associated with periwinkle virescence in Egypt. Plant Pathol. J. 7: 92-97. 80. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genet. 36: 27-29. 81. Paschold, A., Halitschke, R., and Baldwin, I. T. 2007. Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J. 51: 79-91. 82. Peterson, A. G. 1973. Host plant and aster leafhopper relationships. Proc. North Cent. Branch Entomol. Soc. Am. 28: 66-70. 83. Purcell, A. H. 1982. Insect vector relationships with prokaryotic plant pathogens. Ann. Rev. Phytopathol. 20: 397-417. 84. Purcell, A. H. 1987. Comparative epidemiology of X-disease in North America. Pages 175-185. 85. Purcell, A. H. 1988. Increased survival of Dalbulus maidis DeLong & Wolcott, a specialist on maize on non-host plants infected with mollicute plant pathogens. Entomol. Exp. Appl. 46: 187-196. 86. Razin, S., Yogev, D., and Naot, Y. 1998. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62: 1094-1156. 87. Sacchi, L., Genchi, M., Clementi, E., Bigliardi, E., Avanzati, A. M., Pajoro, M., Negri, I., Marzorati, M., Gonella, E., Alma, A., Daffonchio, D., and Bandi, C. 2008. Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): Details of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. Tissue cell 40: 231-242. 88. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491. 89. Sawada, K. 1919. Descriptive catalogue of Formosan fungi. 1: 438. 90. Schneider, B., Ahrens, U., Kirkpatrick, B. C., and Seemüller, E. 1993. Classification of plant- pathogenic mycroplasma-like organisms using restriction- site analysis of PCR-amplified 16S rDNA. J. Gen. Microbiol. 139: 519-527. 91. Schneider, B., and Gibb, K. S. 1997. Detection of phytoplasmas in declining pears in southern Australia. Plant Dis. 81: 254-258. 92. Schneider, B., Seemüller, E., Smart, C. D., and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Pages 369-380 in: Molecular and diagnostic procedures in mycoplasmology, vol. 1. S. Razin and J. G. Tully eds. Academic Press, San Diego, CA. 93. Schultz, G. A. 1973. Plant resistance to aster yellows. Proc. North Cent. Branch Entomol. Soc. Am. 28: 93-99. 94. Seemüller, E., Marcone, C., Lauer, U., Ragozzino. A., and Göschl , M. 1998b. Current status of molecular classification of the phytoplasma. J. Plant Pathol. 80: 3-26. 95. Seemüller, E., and Schneider, B. 2004. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation. Int. J. Syst. Evol. Microbiol. 54: 1217-1226. 96. Seemüller, E., Schneider, B., Mäurer, R., Ahrens, U., Daire, X., Kison, H., Lorenz, K.- H., Firrao, G., Avinent, L., Sears, B. B., and Stackebrandt, E. 1994. Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. Int. J. Sys. Bacteriol. 44: 440-446. 97. Shao, J. Y., Jomantiene, R., Dally, E. L., Zhao, Y., Lee, I. M., Nuss, D. L., and Davis, R. E. 2006. NusA: comparative properties, phylogeny, and use in detection of group 16Srl phytoplasmas. J. Plant Pathol. 88: 193-201. 98. Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens U, Lorenz, K. H., Seemüller, E., and Kirkpatrick, B. C. 1996. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl. Environ. Microbiol. 62: 2988-2993. 99. Svoboda, G. H. 1983. The role of the alkaloids of Catharanthus roseus (L.) G. Don (Vinca rosea) and their derivatives in cancer chemotherapy. Plant: the potentials for extracting protein, medicines, and other useful chemical: workshop proceedings / Congress of the United States, Office of Technology Assessment. Washington, D. C.: For sale by the Supt. of Doc., U. S. G. P. O., 154-169, 154-169. 100. Tanaka, R., Andachi, Y., and Muto, A. 1989. Nucleotide sequence of tryptophan tRNA gene on Acholeplasma laidlawii. Nucleic Acids Res. 17: 5842. 101. Tedeschi, R., and Alma, A. 2004. Transmission of apple proliferation phytoplasma by Cacopsylla melanoneura (Homoptera: Psyllidae). J. Econ. Entomol. 97: 8-13. 102. Tedeschi, R., and Alma, A. 2006. Fieberiella florii (Homoptera: Auchenorrhyncha) as a vector of “Candidatus Phytoplasma mali”. Plant Dis. 90: 284-290. 103. Tedeschi, R., Bosco, D., and Alma, A. 2002. Population dynamics of Cacopsylla melanoneura (Homoptera: Psyllidae), a vector of apple proliferation phytoplasma in Northwestern Italy. J. Econ. Entomol. 95: 544-551. 104. Tedeschi, R., Visentin C., Alma, A., and Bosco, D. 2003. Epidemiology of apple proliferation (AP) in northwestern Italy: evaluation of the frequency of AP-positive psyllids in naturally infected populations of Cacopsylla melanoneura (Homoptera: Psyllidae). Ann. Appl. Biol. 142: 285-90. 105. Torres, E., Bertolini, E., Cambra, M., Montón, C., and Martίn, M. P. 2005. Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Mol. Cell Probes 19: 334-340. 106. Torres, L., Galdeano, E., Docampo, D., and Conci, L. 2004. Characterization of and Aster Yellows phytoplasma associated with catharanthus little leaf in Argentina. J. Plant Pathol. 86: 209-214. 107. Tran-Nguyen, L. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of 'Candidatus Phytoplasma australiense' (subgrouptuf-Australia I; rp-A) and 'Ca. Phytoplasma asteris' Strains OY-M and AY-WB. J. Bacteriol. 190: 3979-91. 108. Tsai, J. H., Chen, X. Y., Shen, C. Y., and Jin, K. X. 1988. Mycoplasma and fastidious vascular prokaryotes associated with tree disease in China. Pages 69-96 in: Tree mycoplasma disease. Hiruk C, editor. The University of Alberta Press, Edmonton, Alberta. 109. Tyagi, S., and Kramer, F. R. 1996. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14: 303-308. 110. Wei, W., Davis, R. E., Lee, I.-M., and Zhao, Y. 2007. Computer simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol. 57: 1855-1867. 111. Wei, W., Lee, I.-M., Davis, R. E., Suo, X., and Zhao, Y. 2008. Automated RFLP pattern composition and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 58: 2368-2377. 112. Whelan, J. A., Russell, N. B., and Whelan, M. A. 2003. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278: 261-269. 113. Woo, T. H. S., Patel , B. K. C., Cinco, M., Smythe, L. D., and Symonds, M. L. 1998. Real-time homogeneous assay of rapid cycle polymerase chain reaction product for identification of Leptonema illini. Anal. Biochem. 259: 112-117. 114. Yamao, F., Muto, A., Kawauchi, Y., Iwami, M., Iwagami, S., Azumi, Y., and Osawa, S. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 82: 2306-2309. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43046 | - |
dc.description.abstract | 於2005年8月起,桃園縣大園鄉之園藝花卉栽培區陸續發現疑似植物菌質體 (phytoplasma) 感染所造成之日日春病害。依罹病植株所呈現之葉片黃化、簇葉、花器葉化等病徵,將此ㄧ新興病害命名為日日春葉片黃化病 (periwinkle leaf yellowing, PLY)。初步利用聚合酵素連鎖反應 (polymerase chain reaction, PCR) 檢測出罹病植株中帶有植物菌質體之基因序列,因此本論文進一步針對該植物菌質體之核醣體RNA基因序列 (rDNA) 進行分析,發現罹病植株體內之植物菌質體乃屬於第一群 (16SrI group) 植物菌質體(又稱為翠菊黃萎病群 (aster yellows group, AY group) 植物菌質體),並且經由嫁接實驗與電顯切片觀察後,進一步確認該病原菌之存在情形,故將其命名為日日春葉片黃化病植物菌質體 (periwinkle leaf yellowing phytoplasma, PLY phytoplasma)。研究中針對PLY phytoplasma所屬之第一群植物菌質體與其他各群植物菌質體之rDNA序列進行比對,設計出第一群植物菌質體專一性之PCR 引子對,以供後續田間罹病植株檢測以及媒介昆蟲之調查。本研究由2007年起,進行媒介昆蟲帶菌情形與族群數量變化之月份監測,同時也將檢測出帶菌之媒介昆蟲進行分類鑑定,至今已發現當地有四種葉蟬可攜帶PLY phytoplasma,分別為東方二叉葉蟬 (Macrosteles orientalis Vilbaste)、二點透翅角頂葉蟬 (Cicadulina bipunctella)、黑點角頂葉蟬 (Phlogotettix cyclops) 以及二室葉蟬 (Balclutha sp.)。2007年5月至2009年4月間之檢測結果顯示,當地媒介昆蟲可於三月至十月間測得帶菌情形,而每年最早測得帶菌之媒介昆蟲皆為東方二叉葉蟬,其帶菌月份恰與當地日日春之栽種時間(約在每年三月下旬至九月底)大致吻合,且其族群數量亦於這段期間內大幅提升。於2008年夏季,採集帶菌率較高之東方二叉葉蟬與二點透翅角頂葉蟬,針對溫室栽培之健康日日春進行傳菌實驗,結果證實此二種葉蟬確實具有傳播PLY phytoplasma至日日春之能力。本研究中也以同步聚合酵素連鎖反應 (real-time PCR) 進行罹病日日春以及四種帶菌蟲體體內帶菌量之測定,在測定帶菌量時,同時藉由測定DNA模板中寄主(日日春或葉蟬)DNA質量 (ng) 以作為校正基準之方式,可更準確的比較感染後不同時間點之罹病日日春以及四種帶菌葉蟬體內帶菌量之差異。由定量之結果顯示,每單位重量 (ng) 之東方二叉葉蟬DNA模板帶菌量非常高,甚至高於嚴重發病之日日春。整合上述研究成果,當地發現之四種可帶菌葉蟬中,東方二叉葉蟬在日日春葉片黃化病之發病生態中扮演較重要之角色,而其他三種葉蟬則可能屬於次要之傳播媒介。 | zh_TW |
dc.description.abstract | In 2005, periwinkle plants exhibiting symptoms of yellowing, witches’ broom, phyllody and virescence were observed in flower production fields in Dayuan, Taoyuan county. The sequences of 16S rDNA and 16S-23S rDNA intergenic spacer region of the causative agent of this newly discovered periwinkle leaf yellowing (PLY) disease were amplified with polymerase chain reaction (PCR) using the total DNA prepared from the diseased leaves as a template. Sequence analysis of 16S rDNA revealed that the causative agent of PLY was closely related to the phytoplasmas of the aster yellows group (16SrI group) those cause worldwide diseases in many horticultural and vegetable crops. The results of grafting experiment and TEM observation provided further evidences to support that the phytoplasma is the causative agent of PLY. The periwinkle leaf yellowing phytoplasma was thus named “Candidatus Phytoplasma asteris” strain PLY. According to the rDNA sequences of various 16SrI group phytoplasmas, the PCR primer pair AYTWf1/ AYTWr1 specific for 16SrI group phytoplasma was designed to detect the PLY phytoplasma in the plants and insect vectors. At present, four species of PLY phytoplasma-harbored leafhoppers were captured in Dayuan and identified as Macrosteles orientalis Vilbaste, Cicadulina bipunctella, Phlogotettix cyclops and Balclutha sp., respectively. Monthly PCR detection indicated that insect vectors harbored PLY phytoplasma from March to October in the year of 2008, and Macrosteles orientalis Vilbaste was the earliest PLY phytoplasma-carrier detected during the period of 2007 to 2009. Transmission experiments with field-collected Macrosteles orientalis Vilbaste and Cicadulina bipunctella showed that both leafhoppers can transmit the PLY phytoplasma to healthy periwinkle plants. The titer of PLY phytoplasma in diseased periwinkle plants and four species of PLY phytoplasma-harbored leafhoppers were quantified in relation to plant or insect DNA (genome units [GU] of phytoplasma DNA per nanogram of plant or insect DNA) using a quantitative real-time PCR. It was also proved that Macrosteles orientalis Vilbaste contains the highest titer of PLY phytoplasma than the other leafhoppers. Therefore, it is reasonable to conclude that Macrosteles orientalis Vilbaste plays a major role in the epidemiology of PLY disease, and the importance of the other leafhoppers call for further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:34:21Z (GMT). No. of bitstreams: 1 ntu-98-R95633012-1.pdf: 1829437 bytes, checksum: 0d4dc4470eacdc35527b74b7589f754f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 論文口試委員審定書...................................................................................................II
誌謝..............................................................................................................................III 中文摘要......................................................................................................................IV 英文摘要......................................................................................................................VI 壹、 前言........................................................................................................................1 貳、 前人研究................................................................................................................3 一、日日春之簡介與其病害之相關研究............................................................3 二、植物菌質體之發現及其生物特性................................................................4 三、植物菌質體之分群現況................................................................................6 四、第一群 (16SrI group) 植物菌質體之相關研究..........................................9 五、植物菌質體之媒介昆蟲..............................................................................11 (一)媒介昆蟲之調查................................................................................12 (二)媒介昆蟲之傳播特性與生理行為之改變........................................13 六、同步聚合酵素連鎖反應之發展與其在植物菌質體之相關研究..............15 參、材料與方法..........................................................................................................19 一、試驗植物及媒介昆蟲來源與其全DNA (total DNA)之純化……............19 (一)試驗植物與媒介昆蟲來源................................................................19 1. 試驗植物來源與栽培方式...............................................................19 2. 媒介昆蟲之採集...............................................................................20 (二)試驗植物與媒介昆蟲全DNA之純化..............................................20 1. 大量抽取植物全DNA......................................................................20 2. 微量抽取植物全DNA......................................................................21 3. 媒介昆蟲全DNA之純化.................................................................22 二、日日春葉片黃化病罹病植株中植物菌質體 ribosomal DNA 序列之PCR 增幅 (amplification)、選殖 (cloning) 與分析........................................23 (一)聚合酵素連鎖反應 (PCR) ..............................................................23 (二)聚合酵素連鎖反應產物之純化與選殖...........................................24 1. 聚合酵素連鎖反應產物之純化.......................................................24 2. 聚合酵素連鎖反應產物之選殖.......................................................25 (三)聚合酵素連鎖反應產物轉形株之特性分析....................................26 1. 以菌落聚合酵素連鎖反應 (colony PCR) 分析轉形株之選殖片段 ..............................................................................................................26 2. 轉形株選殖片段之核酸定序與序列分析......................................27 (四)第一群 (16SrI) 植物菌質體專一性PCR引子對之設計...............27 三、日日春葉片黃化病罹病植株之穿透式電子顯微鏡觀察..........................28 四、日日春葉片黃化病媒介昆蟲之檢測與鑑定..............................................28 (一)以第一群植物菌質體專一性PCR引子對偵測田間可能之媒介昆蟲 ……………………………………………..........................................28 (二)帶菌昆蟲體內植物菌質體16S rDNA全長序列之增幅、選殖與分 析……………………………………................................................29 (三)田間帶菌昆蟲之分類鑑定………....................................................29 五、日日春葉片黃化病媒介昆蟲之月份監測..................................................30 (一)田間媒介昆蟲帶菌情形之PCR月份偵測.......................................30 (二)黃色黏蟲板誘集試驗.........................................................................30 六、日日春葉片黃化病媒介昆蟲之傳菌實驗 (transmission experiments) ....30 (一)媒介昆蟲傳菌實驗之材料準備........................................................30 (二)媒介昆蟲傳菌實驗流程....................................................................31 1. 東方二叉葉蟬 (Macrosteles orientalis Vilbaste)之傳菌實驗........31 2. 二點透翅角頂葉蟬 (Cicadulina bipunctella) 之傳菌實驗...........32 (三)傳菌實驗之蟲體及受試植株之PCR檢測、產物選殖與序列分析 ............................................................................................................32 (四)東方二叉葉蟬 (Macrosteles orientalis Vilbaste)之養殖與獲菌試驗 ............................................................................................................32 七、以同步聚合酵素連鎖反應 (real-time PCR) 測定日日春葉片黃化病罹病 植株及媒介昆蟲帶菌量..............................................................................33 (一)同步聚合酵素連鎖反應之引子對設計............................................33 (二)同步聚合酵素連鎖反應標準曲線 (standard curve) 之建構..........33 1. 同步聚合酵素連鎖反應標準濃度DNA模板之製備.....................33 (1) 日日春葉片黃化病植物菌質體16S rDNA之標準濃度人工 DNA模板 (artificial DNA template) 之製備..........................34 (2) 健康日日春標準濃度DNA模板之製備...................................35 (3) 葉蟬標準濃度DNA模板之製備...............................................35 2. 同步聚合酵素連鎖反應 (real-time PCR) ......................................35 3. 標準曲線之建構...............................................................................36 (三)以同步聚合酵素連鎖反應進行日日春與媒介昆蟲體內植物菌質體 之定量................................................................................................37 1. 同步聚合酵素連鎖反應 (real-time PCR) ......................................37 2. 罹病日日春與媒介昆蟲體內之菌量計算.......................................37 肆、 結果......................................................................................................................38 一、試驗植物及媒介昆蟲來源與全DNA (total DNA)之純化........................38 (一)嫁接日日春之病徵發展....................................................................38 (二)試驗植物與媒介昆蟲全DNA之純化..............................................38 二、日日春葉片黃化病罹病植株中植物菌質體 ribosomal DNA 序列之PCR 增幅 (amplification)、選殖 (cloning) 與分析........................................38 (一)以聚合酵素連鎖反應 (PCR) 偵測罹病株中之植物菌質體.......38 (二)聚合酵素連鎖反應產物之選殖與選殖株之特性分析..................39 (三)日日春葉片黃化病植物菌質體之rDNA序列分析與分類地位之確 定........................................................................................................39 (四)第一群植物菌質體PCR引子對AYTWf1/ AYTWr1之專一性測定 ..............................................................................................................40 三、日日春葉片黃化病罹病植株之穿透式電子顯微鏡觀察..........................41 四、日日春葉片黃化病媒介昆蟲之檢測與鑑定..............................................42 (一)田間可能媒介昆蟲之PCR檢測.........................................................42 (二)帶菌昆蟲體內植物菌質體16S rDNA全長序列之分析.................42 (三)田間帶菌昆蟲之分類鑑定................................................................42 五、日日春葉片黃化病媒介昆蟲之月份監測..................................................43 (一)田間媒介昆蟲帶菌情形之PCR月份偵測.......................................43 (二)黃色黏蟲板誘集試驗.........................................................................45 六、日日春葉片黃化病之媒介昆蟲傳菌實驗..................................................46 (一)傳菌實驗之蟲體及受試植株帶菌情形之PCR檢測與選殖分析...46 1. 東方二叉葉蟬傳菌實驗之蟲體及受試植株之PCR檢測..............46 2. 二點透翅角頂葉蟬傳菌實驗之蟲體及受試植株之PCR檢測…..47 3. 傳菌實驗之帶菌蟲體與罹病植株之PCR產物選殖與序列分析..47 (二)東方二叉葉蟬之養殖與獲菌試驗....................................................48 七、以同步聚合酵素連鎖反應 (real-time PCR) 測定日日春葉片黃化病罹病 植株及媒介昆蟲帶菌量..............................................................................48 (一)同步聚合酵素連鎖反應之引子對專一性測定.................................48 (二)同步聚合酵素連鎖反應標準曲線之建構.........................................50 1. 以 PLY Fw/ PLY Rv 引子對建構日日春葉片黃化病植物菌質體 菌量之標準曲線..............................................................................50 2. 以UBQ-1252F/ UBQ-1392R 引子對建構日日春DNA質量之標準 曲線..................................................................................................51 3. 以 MqFw/ MqRv 引子對建構四種葉蟬DNA質量之標準曲線..51 (三)以同步聚合酵素連鎖反應進行日日春與媒介昆蟲體內植物菌質體 之定量................................................................................................52 1. 罹病日日春植株內帶菌量之定量實驗...........................................52 2. 四種帶菌昆蟲體內帶菌量之定量實驗...........................................53 伍、討論......................................................................................................................55 陸、參考文獻..............................................................................................................70 柒、圖表......................................................................................................................84 | |
dc.language.iso | zh-TW | |
dc.title | 日日春葉片黃化病之病原植物菌質體與其媒介昆蟲之探討 | zh_TW |
dc.title | Study on the Etiology and Insect Vectors of
Periwinkle Leaf Yellowing Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾國欽(Kuo-Ching Tzeng),徐源泰,沈偉強 | |
dc.subject.keyword | 核醣體RNA基因,聚合酵素連鎖反應,日日春葉片黃化病植物菌質體,媒介昆蟲,傳菌實驗,同步聚合酵素連鎖反應, | zh_TW |
dc.subject.keyword | rRNA gene,polymerase chain reaction,periwinkle leaf yellowing phytoplasma,insect vectors,transmission experiments,real-time PCR, | en |
dc.relation.page | 121 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。