Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏嗣鈞(Hsu-Chun Yen)
dc.contributor.authorPing-Hsien Linen
dc.contributor.author林秉賢zh_TW
dc.date.accessioned2021-06-15T01:33:27Z-
dc.date.available2012-07-28
dc.date.copyright2009-07-28
dc.date.issued2009
dc.date.submitted2009-07-18
dc.identifier.citation[1] M. R. Peres, The Focal Encyclopedia of Photography. Focal Press, fourth ed., 2007.
[2] “Digital photography milestones from kodak,”
http://www.womeninphotography.org/Events-Exhibits/Kodak/EasyShare 3.html,
2005.
[3] “Digital camera,” http://en.wikipedia.org/wiki/Digital camera, 2009.
[4] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Addison-Wesley Publishing,
second ed., 2002.
[5] R. Hummel, “Image enhancement by histogram transformation,” Computer Graphics
and Image Processing, vol. 6, pp. 184–195, 1977.
[6] Y. T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,”
IEEE Transaction on Consumer Electronics, vol. 43, no. 1, pp. 1–8, 1997.
[7] Y. Wan, Q. Chen, and B. M. Zhang, “Image enhancement based on equal area dualistic
sub-image histogram equalization method,” IEEE Transaction on Consumer
Electronics, vol. 45, no. 1, pp. 68–75, 1999.
[8] S. D. Chen and A. Ramli, “Minimum mean birhgtness error bi-histogram equalization in contrast enhancement,” IEEE Transaction on Consumer Electronics, vol. 49,
no. 4, pp. 1310–1319, 2003.
[9] S. D. Chen and A. Ramli, “Contrast enhancement using recursive mean-separate
histogram equalization for scalable brightness preservation,” IEEE Transaction on
Consumer Electronics, vol. 49, no. 4, pp. 1301–1309, 2003.
[10] D. Menotti, L. Najman, J. Facon, and A. de A. Ara´ujo, “Multi-histogram equalization
methods for contrast enhancement and brightness preserving,” IEEE Transaction
on Consumer Electronics, vol. 53, no. 3, pp. 1186–1194, 2007.
[11] K. S. Sim, C. P. Tso, and Y. Y. Tan, “Recursive sub-image histogram equalization
applied to gray scale images,” Pattern Recognition Letters, vol. 28, no. 10, pp. 1209–
1221, 2007.
[12] “Primary color,” http://en.wikipedia.org/wiki/Primary color, 2009.
[13] “RGB color model,” http://en.wikipedia.org/wiki/RGB, 2009.
[14] “YUV color model,” http://en.wikipedia.org/wiki/YUV, 2009.
[15] X. Li, G. Ni, Y. Cui, T. Pu, and Y. Zhong, “Real-time image histogram equalization
using FPGA,” in Electronic imaging and multimedia systems, pp. 293–299, 1998.
[16] Z. Salcic and J. Sivaswamy, “IMECO: A ReconRgurable FPGA-based Image Enhancement
Co-Processor Framework,” Real-Time Imaging, vol. 5, no. 6, pp. 385–395, 1999.
[17] S. Kelby, The Digital Photography Book. Peachpit Press, 2006.
[18] S. Ghahramani, Fundementals of Probability. Prentice Hall, 1996.
[19] R. D. Yates and D. J. Goodman, Probablity and Stochastic Processes. John Wileys
& Sons, Inc., second ed., 2005.
[20] G. E. P. Box and M. E. Muller, “A note on the generation of random normal deviates,”
Annual of Mathematical Statistics, vol. 29, no. 2, pp. 610–611, 1958.
[21] “Normal distribution,” http://en.wikipedia.org/wiki/Normal distribution, 2009.
[22] P. A. Mlsna and J. J. Rodr´ıguez, “Explosion of multidimensional image histograms,”
in Proceedings of International Conference on Image Processing, pp. 958–962,
1994.
[23] V. Bhaskaran and K. Kontantinides, Image and Video Compression Standards: Algorithms
and Architectures. Kuwer Academic Publishers, second ed., 1997.
[24] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review,
vol. 106, no. 4, pp. 620–630, 1957.
[25] B. L. Deekshatulu, A. D. Kulkarni, and R. G. Kashipati, “Quantitative evaluation of
enhancement techniques,” Signal Processing, vol. 8, no. 3, pp. 369–375, 1985.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43027-
dc.description.abstract隨著現今數位攝影技術的普及,越來越多的消費類電子設備,皆安裝了照片拍攝功能。然而,大部分的複合功能性電子設備,如個人數位助理(PDA)、手機等,並非針對專業攝影功能設計,依據經濟上的考量,攝影功能與元件也以簡單低成本為主。這個原因導致多數經由此種設備所攝得的照片,沒有經過硬體上或是光學上的處理,在使用者觀賞上品質較低落,如低對比的圖像,圖片內容辨識不清,或是手震與動態物體造成的影像模糊等;此類相片泰半依賴後階處理技術來強化,並且可交由價錢較低廉的軟體演算法解決。
在此論文中,我們主要提出了兩種主要演算法,「重複性分直方圖等化方法」和「統計性三分直方圖等化方法」,憑以著名的直方圖均化方法為基礎,前者利用重複性的直方圖重整方法,特別為增強彩色圖像的對比強度而設計,並且達到一定程度的亮度保存;後者經由圖片中的統計數值與攝影構圖特性將圖片切分,並經由分直方圖的調整與均化,達到較佳的亮度保持效果,同時也增進整張圖像的對比程度
。除上述兩種主要方法之外,我們也提出了一種次要性後增強演算法
「直方圖高斯分佈過濾方法」,可直接銜接應用於上述兩種方法之後,以改善因為直方圖均化而造成的圖素亮度量化現象,進而從微觀方面增強對比。
由於直方圖的相關計算與影像色彩空間的轉換方法已成熟的實作於硬體之上,本論文所提出之依據直方圖計算之對比強化方法可以很容易實踐於彩色圖像之上;並且依上述方法具高效率的軟體計算量,很適合應用於一般消費性電子產品。
zh_TW
dc.description.abstractWith the prevalence of digital photographing nowadays, more and more consumer electronic devices are installed with photo-shooting functionalities. Most equipment, somehow, is not intended for professional use of photographing, and hence components for this purpose are not delicate enough under economical considerations. This produces pictures that are not fairly acceptable under some extreme shooting conditions, like low-contrasting images, and has to rely on
post-processing techniques to improve the quality of these images.
In this thesis, we propose two primary methods, Iterative
Sub-Histogram Equalization (ISHE) and Statistic-Separate
Tri-Histogram Equalization (SSTHE), for contrast enhancement on color images with brightness preservation, and a secondary post-enhancement technique, Gaussian Distributive Filter (GDF), to directly improve contrasts from a micro aspect and reduce brightness quantization of the output histogram from former methods.
ISHE generates a high-contrasting image and preserves brightness to some level by iteratively utilizing the BBHE method. SSTHE segments the original histogram into three regions according to the mean and standard deviation of the image brightness, re-ranges spans of each sub-histogram and executes histogram equalization within each scope
respectively. GDF locates and disperses over-concentrated values in the histogram with the Gaussian distributive pattern.
Since the histogram calculation has already been maturely
implemented in hardware, the methods proposed in the thesis could be readily applied on still color images because of their simplicity, as well as low computation requirements make them suitable for consumer electronics.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:33:27Z (GMT). No. of bitstreams: 1
ntu-98-R96921014-1.pdf: 18196391 bytes, checksum: aa05a79d4b706bb5d05156c345296b56 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of Contents
口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
1 Introduction 1
2 Preliminaries 7
2.1 Fundamentals of Color Image Processing . . . . . . . . . . . . . . . . . 7
2.1.1 Basics of Digitized Images . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Representation for Color Images . . . . . . . . . . . . . . . . . . 10
2.2 Histogram Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Threshold-separate Multi-Histogram Equalization . . . . . . . . . . . . . 18
3 Iterative Sub-histogram Equalization 22
3.1 Brightness-preserving Bi-Histogram Equalization . . . . . . . . . . . . . 22
3.2 Iterative Sub-histogram Equalization (ISHE) . . . . . . . . . . . . . . . . 24
4 Statistic-separate Tri-histogram Equalization 28
4.1 Histogram Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Sub-histogram Re-ranging . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Tri-histogram Equalization . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Gaussian Distributive Filter in Histogram Domain 35
5.1 Discrete Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Histogramal Distributive filter based on Normalized Designation . . . . . 37
6 Experimental Results 42
6.1 Comparative Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Experimental Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Contrast Enhancement on Realistic Photographs . . . . . . . . . . . . . . 46
6.3.1 Under-exposed Pictures . . . . . . . . . . . . . . . . . . . . . . 46
6.3.2 Over-exposed Pictures . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.3 Low-contrasting Pictures with Average Brightness . . . . . . . . 62
6.4 Effects of Gaussian Distributive Filtering in Histograms . . . . . . . . . . 66
6.5 Time Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7 Conclusions and FutureWorks 76
References 80
dc.language.isoen
dc.subject影像處理zh_TW
dc.subject圖像分區zh_TW
dc.subject直方圖等化zh_TW
dc.subject對比增強zh_TW
dc.subjectimage processingen
dc.subjectcontrast enhancementen
dc.subjecthistogram equalizationen
dc.subjectsegmentationsen
dc.title利用直方圖等化的變化方法處理彩色數位影像對比增強zh_TW
dc.titleContrast Enhancement for Digital Color Images Using Variants of Histogram Equalizationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee雷欽隆(Chin-Laung Lei),郭斯彥(Sy-Yen Kuo),莊仁輝(Jen-Hui Chuang),黃秋煌(Chua-Huang Huang)
dc.subject.keyword對比增強,影像處理,直方圖等化,圖像分區,zh_TW
dc.subject.keywordcontrast enhancement,image processing,histogram equalization,segmentations,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2009-07-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
17.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved