請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43025
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃青真 | |
dc.contributor.author | Cheng-Chu Chung | en |
dc.contributor.author | 鍾誠珠 | zh_TW |
dc.date.accessioned | 2021-06-15T01:33:21Z | - |
dc.date.available | 2012-07-28 | |
dc.date.copyright | 2009-07-28 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-19 | |
dc.identifier.citation | 行政院衛生署國民健康局 (2003). 91年臺灣地區高血糖、高血脂、高血壓盛行率調查。.
莊佳穎 (2004). 山苦瓜活化過氧化體增值劑活化受器PPARs之成份分離與鑑定. 國立台灣大學微生物與生化學研究所碩士論文. 許珊菁 (2006). 鼠模式中高脂飲食、肥胖與脂質調控基因之表現. 國立台灣大學微生物與生化學研究所博士論文. 趙哲毅 (2003). 苦瓜活化過氧化體增值劑活化受器及改變脂質代謝相關基因之表現. 國立台灣大學微生物與生化學研究所博士論文. 謝婉郁 (2005). 山苦瓜改善血糖血脂代謝異常之效應探討. 國立台灣大學微生物與生化學研究所碩士論文 Ahmed, Z., Simon, B., and Choudhury, D. (2009). Management of diabetes in patients with chronic kidney disease. Postgrad Med 121, 52-60. Ahren, B., Gudbjartsson, T., Al-Amin, A.N., Martensson, H., Myrsen-Axcrona, U., Karlsson, S., Mulder, H., and Sundler, F. (1999). Islet perturbations in rats fed a high-fat diet. Pancreas 18, 75-83. Akagiri, S., Naito, Y., Ichikawa, H., Mizushima, K., Takagi, T., Handa, O., Kokura, S., and Yoshikawa, T. (2008). A Mouse Model of Metabolic Syndrome; Increase in Visceral Adipose Tissue Precedes the Development of Fatty Liver and Insulin Resistance in High-Fat Diet-Fed Male KK/Ta Mice. J Clin Biochem Nutr 42, 150-157. Arkblad, E.L., Betsholtz, C., and Rydstrom, J. (1996). The cDNA sequence of proton-pumping nicotinamide nucleotide transhydrogenase from man and mouse. Biochim Biophys Acta 1273, 203-205. Aubert, J., Safonova, I., Negrel, R., and Ailhaud, G. (1998). Insulin down-regulates angiotensinogen gene expression and angiotensinogen secretion in cultured adipose cells. Biochem Biophys Res Commun 250, 77-82. Banks, T., and Oyekan, A. (2008). Peroxisome proliferator-activated receptor alpha activation attenuated angiotensin type 1-mediated but enhanced angiotensin type 2-mediated hemodynamic effects to angiotensin II in the rat. J Hypertens 26, 468-477. Bar-On, H., and Stein, Y. (1968). Effect of glucose and fructose administration on lipid metabolism in the rat. J Nutr 94, 95-105. Barter, P.J., and Rye, K.A. (2008). Is there a role for fibrates in the management of dyslipidemia in the metabolic syndrome? Arterioscler Thromb Vasc Biol 28, 39-46. Basch, E., Gabardi, S., and Ulbricht, C. (2003). Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm 60, 356-359. Basciano, H., Federico, L., and Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2, 5. Boden, G., and Shulman, G.I. (2002). Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32 Suppl 3, 14-23. Bray, G.A., Nielsen, S.J., and Popkin, B.M. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79, 537-543. Buettner, R., Scholmerich, J., and Bollheimer, L.C. (2007). High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15, 798-808. Capeau, J. (2008). Insulin resistance and steatosis in humans. Diabetes Metab 34, 649-657. Cassis, L.A. (1992). Downregulation of the renin-angiotensin system in streptozotocin-diabetic rats. Am J Physiol 262, E105-109. Cassis, L.A., Saye, J., and Peach, M.J. (1988). Location and regulation of rat angiotensinogen messenger RNA. Hypertension 11, 591-596. Chao, C.Y., and Huang, C.J. (2003). Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci 10, 782-791. Chapman, M.J., and Sposito, A.C. (2008). Hypertension and dyslipidaemia in obesity and insulin resistance: pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacol Ther 117, 354-373. Chen, N.G., and Reaven, G.M. (1999). Fatty acid inhibition of glucose-stimulated insulin secretion is enhanced in pancreatic islets from insulin-resistant rats. Metabolism 48, 1314-1317. Chen, Q., Chan, L.L., and Li, E.T. (2003). Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr 133, 1088-1093. Chen, R., Liang, F., Moriya, J., Yamakawa, J., Takahashi, T., Shen, L., and Kanda, T. (2008). Peroxisome proliferator-activated receptors (PPARs) and their agonists for hypertension and heart failure: are the reagents beneficial or harmful? Int J Cardiol 130, 131-139. Chong, M.F., Fielding, B.A., and Frayn, K.N. (2007). Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc Nutr Soc 66, 52-59. Chu, N.F. (2005). Prevalence of obesity in Taiwan. Obes Rev 6, 271-274. Chuang, C.Y., Hsu, C., Chao, C.Y., Wein, Y.S., Kuo, Y.H., and Huang, C.J. (2006). Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.). J Biomed Sci 13, 763-772. Cirillo, P., Sato, W., Reungjui, S., Heinig, M., Gersch, M., Sautin, Y., Nakagawa, T., and Johnson, R.J. (2006). Uric acid, the metabolic syndrome, and renal disease. J Am Soc Nephrol 17, S165-168. Curtis, R., Geesaman, B.J., and DiStefano, P.S. (2005). Ageing and metabolism: drug discovery opportunities. Nat Rev Drug Discov 4, 569-580. D'Amico, G.D., and Gentile, M.G. (1993). Treatment of hyperlipidemia in human renal disease. Miner Electrolyte Metab 19, 196-204. D'Angelo, G., Elmarakby, A.A., Pollock, D.M., and Stepp, D.W. (2005). Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats. Hypertension 46, 806-811. Desvergne, B., and Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20, 649-688. Drewnowski, A., and Bellisle, F. (2007). Liquid calories, sugar, and body weight. Am J Clin Nutr 85, 651-661. Elliott, S.S., Keim, N.L., Stern, J.S., Teff, K., and Havel, P.J. (2002). Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76, 911-922. Engeli, S., Schling, P., Gorzelniak, K., Boschmann, M., Janke, J., Ailhaud, G., Teboul, M., Massiera, F., and Sharma, A.M. (2003). The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol 35, 807-825. Fernandes, N.P., Lagishetty, C.V., Panda, V.S., and Naik, S.R. (2007). An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Complement Altern Med 7, 29. Ford, E.S., Giles, W.H., and Dietz, W.H. (2002). Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356-359. Frederich, R.C., Jr., Kahn, B.B., Peach, M.J., and Flier, J.S. (1992). Tissue-specific nutritional regulation of angiotensinogen in adipose tissue. Hypertension 19, 339-344. Freeman, H., Shimomura, K., Horner, E., Cox, R.D., and Ashcroft, F.M. (2006a). Nicotinamide nucleotide transhydrogenase: a key role in insulin secretion. Cell Metab 3, 35-45. Freeman, H.C., Hugill, A., Dear, N.T., Ashcroft, F.M., and Cox, R.D. (2006b). Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55, 2153-2156. Gaikwad, A.B., Viswanad, B., and Ramarao, P. (2007). PPAR gamma agonists partially restores hyperglycemia induced aggravation of vascular dysfunction to angiotensin II in thoracic aorta isolated from rats with insulin resistance. Pharmacol Res 55, 400-407. Gallou-Kabani, C., Vige, A., Gross, M.S., Rabes, J.P., Boileau, C., Larue-Achagiotis, C., Tome, D., Jais, J.P., and Junien, C. (2007). C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity (Silver Spring) 15, 1996-2005. Girard, J., Perdereau, D., Foufelle, F., Prip-Buus, C., and Ferre, P. (1994). Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J 8, 36-42. Goldstein, B.J., and Scalia, R. (2004). Adiponectin: A novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 89, 2563-2568. Goossens, G.H., Blaak, E.E., Arner, P., Saris, W.H., and van Baak, M.A. (2007). Angiotensin II: a hormone that affects lipid metabolism in adipose tissue. Int J Obes (Lond) 31, 382-384. Gotto, A.M., Jr. (1992). Hypertriglyceridemia: risks and perspectives. Am J Cardiol 70, 19H-25H. Hara, T., Cameron-Smith, D., Cooney, G.J., Kusunoki, M., Tsutsumi, K., and Storlien, L.H. (1998). The actions of a novel lipoprotein lipase activator, NO-1886, in hypertriglyceridemic fructose-fed rats. Metabolism 47, 149-153. Harte, R.A., Kirk, E.A., Rosenfeld, M.E., and LeBoeuf, R.C. (1999). Initiation of hyperinsulinemia and hyperleptinemia is diet dependent in C57BL/6 mice. Horm Metab Res 31, 570-575. Heinig, M., and Johnson, R.J. (2006). Role of uric acid in hypertension, renal disease, and metabolic syndrome. Cleve Clin J Med 73, 1059-1064. Hu, J., Tiwari, S., Riazi, S., Hu, X., Wang, X., and Ecelbarger, C.M. (2009). Regulation of angiotensin II type I receptor (AT1R) protein levels in the obese Zucker rat kidney and urine. Clin Exp Hypertens 31, 49-63. Huang, H.L., Hong, Y.W., Wong, Y.H., Chen, Y.N., Chyuan, J.H., Huang, C.J., and Chao, P.M. (2008). Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. Br J Nutr 99, 230-239. Huang, Y.J., Fang, V.S., Juan, C.C., Chou, Y.C., Kwok, C.F., and Ho, L.T. (1997). Amelioration of insulin resistance and hypertension in a fructose-fed rat model with fish oil supplementation. Metabolism 46, 1252-1258. Huber, J., Loffler, M., Bilban, M., Reimers, M., Kadl, A., Todoric, J., Zeyda, M., Geyeregger, R., Schreiner, M., Weichhart, T., et al. (2007). Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids. Int J Obes (Lond) 31, 1004-1013. Hwang, I.S., Ho, H., Hoffman, B.B., and Reaven, G.M. (1987). Fructose-induced insulin resistance and hypertension in rats. Hypertension 10, 512-516. Ibrahim, M.M. (2006). RAS inhibition in hypertension. J Hum Hypertens 20, 101-108. Isomaa, B. (2003). A major health hazard: the metabolic syndrome. Life Sci 73, 2395-2411. Israili, Z.H., Lyoussi, B., Hernandez-Hernandez, R., and Velasco, M. (2007). Metabolic syndrome: treatment of hypertensive patients. Am J Ther 14, 386-402. Jacobson, T.A., Miller, M., and Schaefer, E.J. (2007). Hypertriglyceridemia and cardiovascular risk reduction. Clin Ther 29, 763-777. Jeppesen, J., Chen, Y.I., Zhou, M.Y., Schaaf, P., Coulston, A., and Reaven, G.M. (1995). Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am J Clin Nutr 61, 787-791. Johnson, R.J., Segal, M.S., Sautin, Y., Nakagawa, T., Feig, D.I., Kang, D.H., Gersch, M.S., Benner, S., and Sanchez-Lozada, L.G. (2007). Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86, 899-906. Jones, B.H., Standridge, M.K., and Moustaid, N. (1997a). Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138, 1512-1519. Jones, B.H., Standridge, M.K., Taylor, J.W., and Moustaid, N. (1997b). Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. Am J Physiol 273, R236-242. Kaku, K., Fiedorek, F.T., Jr., Province, M., and Permutt, M.A. (1988). Genetic analysis of glucose tolerance in inbred mouse strains. Evidence for polygenic control. Diabetes 37, 707-713. Kendall, D.M., and Harmel, A.P. (2002). The metabolic syndrome, type 2 diabetes, and cardiovascular disease: understanding the role of insulin resistance. Am J Manag Care 8, S635-653; quiz S654-637. Kim, S., and Moustaid-Moussa, N. (2000). Secretory, endocrine and autocrine/paracrine function of the adipocyte. J Nutr 130, 3110S-3115S. Kim, S.G., Ryu, O.H., Kim, H.Y., Lee, K.W., Seo, J.A., Kim, N.H., Choi, K.M., Lee, J., Baik, S.H., and Choi, D.S. (2006). Effect of rosiglitazone on plasma adiponectin levels and arterial stiffness in subjects with prediabetes or non-diabetic metabolic syndrome. Eur J Endocrinol 154, 433-440. Kraegen, E.W., Clark, P.W., Jenkins, A.B., Daley, E.A., Chisholm, D.J., and Storlien, L.H. (1991). Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40, 1397-1403. Kuusisto, J., Andrulionyte, L., and Laakso, M. (2007). Atherosclerosis and cardiovascular risk reduction with PPAR agonists. Curr Atheroscler Rep 9, 274-280. Le, K.A., and Bortolotti, M. (2008). Role of dietary carbohydrates and macronutrients in the pathogenesis of nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 11, 477-482. Le, K.A., and Tappy, L. (2006). Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9, 469-475. Lee, C.H., Olson, P., and Evans, R.M. (2003). Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144, 2201-2207. Manabe, M., Takenaka, R., Nakasa, T., and Okinaka, O. (2003). Induction of anti-inflammatory responses by dietary Momordica charantia L. (bitter gourd). Biosci Biotechnol Biochem 67, 2512-2517. Mayer, M.A., Hocht, C., Gironacci, M., Opezzo, J.A., Taira, C.A., Fernandez, B.E., and Puyo, A.M. (2008). Hypothalamic angiotensinergic-noradrenergic systems interaction in fructose induced hypertension. Regul Pept 146, 38-45. Melanson, K.J., Angelopoulos, T.J., Nguyen, V., Zukley, L., Lowndes, J., and Rippe, J.M. (2008). High-fructose corn syrup, energy intake, and appetite regulation. Am J Clin Nutr 88, 1738S-1744S. Miller, A., and Adeli, K. (2008). Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol 24, 204-209. Miller, M. (1999). The epidemiology of triglyceride as a coronary artery disease risk factor. Clin Cardiol 22, II1-6. Moghadasian, M.H., and Frohlich, J.J. (1999). Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am J Med 107, 588-594. Morgan, L., Broughton Pipkin, F., and Kalsheker, N. (1996). Angiotensinogen: molecular biology, biochemistry and physiology. Int J Biochem Cell Biol 28, 1211-1222. Mykkanen, L., Haffner, S.M., Ronnemaa, T., Bergman, R.N., and Laakso, M. (1997). Low insulin sensitivity is associated with clustering of cardiovascular disease risk factors. Am J Epidemiol 146, 315-321. Nagai, Y., Nishio, Y., Nakamura, T., Maegawa, H., Kikkawa, R., and Kashiwagi, A. (2002). Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am J Physiol Endocrinol Metab 282, E1180-1190. Nicol, C.J., Adachi, M., Akiyama, T.E., and Gonzalez, F.J. (2005). PPARgamma in endothelial cells influences high fat diet-induced hypertension. Am J Hypertens 18, 549-556. Nugent, C., and Younossi, Z.M. (2007). Evaluation and management of obesity-related nonalcoholic fatty liver disease. Nat Clin Pract Gastroenterol Hepatol 4, 432-441. Ogata, T., Miyauchi, T., Sakai, S., Irukayama-Tomobe, Y., Goto, K., and Yamaguchi, I. (2002). Stimulation of peroxisome-proliferator-activated receptor alpha (PPAR alpha) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. Clin Sci (Lond) 103 Suppl 48, 284S-288S. Ohman, M.K., Wright, A.P., Wickenheiser, K.J., Luo, W., and Eitzman, D.T. (2009). Visceral adipose tissue and atherosclerosis. Curr Vasc Pharmacol 7, 169-179. Ojewole, J.A., Adewole, S.O., and Olayiwola, G. (2006). Hypoglycaemic and hypotensive effects of Momordica charantia Linn (Cucurbitaceae) whole-plant aqueous extract in rats. Cardiovasc J S Afr 17, 227-232. Platel, K., and Srinivasan, K. (1997). Plant foods in the management of diabetes mellitus: vegetables as potential hypoglycaemic agents. Nahrung 41, 68-74. Postic, C., and Girard, J. (2008). The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab 34, 643-648. Reaven, G. (2002). Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 106, 286-288. Reaven, G.M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595-1607. Reeves, P.G., Nielsen, F.H., and Fahey, G.C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 1939-1951. Riccardi, G., and Rivellese, A.A. (2000). Dietary treatment of the metabolic syndrome--the optimal diet. Br J Nutr 83 Suppl 1, S143-148. Rivellese, A.A., De Natale, C., and Lilli, S. (2002). Type of dietary fat and insulin resistance. Ann N Y Acad Sci 967, 329-335. Rocchini, A.P. (1994). The relationship of sodium sensitivity to insulin resistance. Am J Med Sci 307 Suppl 1, S75-80. Roglans, N., Sanguino, E., Peris, C., Alegret, M., Vazquez, M., Adzet, T., Diaz, C., Hernandez, G., Laguna, J.C., and Sanchez, R.M. (2002). Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmacol Exp Ther 302, 232-239. Roglans, N., Vila, L., Farre, M., Alegret, M., Sanchez, R.M., Vazquez-Carrera, M., and Laguna, J.C. (2007). Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 45, 778-788. Salas-Salvado, J., Granada, M., Bullo, M., Corominas, A., Casas, P., and Foz, M. (2007). Plasma adiponectin distribution in a Mediterranean population and its association with cardiovascular risk factors and metabolic syndrome. Metabolism 56, 1486-1492. Sanchez-Lozada, L.G., Tapia, E., Jimenez, A., Bautista, P., Cristobal, M., Nepomuceno, T., Soto, V., Avila-Casado, C., Nakagawa, T., Johnson, R.J., et al. (2007). Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 292, F423-429. Schoonjans, K., Staels, B., and Auwerx, J. (1996). The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302, 93-109. Senanayake, G.V., Maruyama, M., Shibuya, K., Sakono, M., Fukuda, N., Morishita, T., Yukizaki, C., Kawano, M., and Ohta, H. (2004). The effects of bitter melon (Momordica charantia) on serum and liver triglyceride levels in rats. J Ethnopharmacol 91, 257-262. Shah, P., Basu, A., and Rizza, R. (2003). Fat-induced liver insulin resistance. Curr Diab Rep 3, 214-218. Sharabi, Y., Oron-Herman, M., Kamari, Y., Avni, I., Peleg, E., Shabtay, Z., Grossman, E., and Shamiss, A. (2007). Effect of PPAR-gamma agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am J Hypertens 20, 206-210. Shih, C.C., Lin, C.H., and Lin, W.L. (2008). Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 81, 134-143. Singh, S.K., Sarkar, D., and Agrawal, J.K. (1999). Insulin resistance and urinary excretion of sodium in hypertensive patients with non-insulin dependent diabetes mellitus. J Assoc Physicians India 47, 709-711. Sinitskaya, N., Gourmelen, S., Schuster-Klein, C., Guardiola-Lemaitre, B., Pevet, P., and Challet, E. (2007). Increasing the fat-to-carbohydrate ratio in a high-fat diet prevents the development of obesity but not a prediabetic state in rats. Clin Sci (Lond) 113, 417-425. Sridhar, M.G., Vinayagamoorthi, R., Arul Suyambunathan, V., Bobby, Z., and Selvaraj, N. (2008). Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats. Br J Nutr 99, 806-812. Stanhope, K.L., and Havel, P.J. (2008). Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol 19, 16-24. Stump, C.S., Hamilton, M.T., and Sowers, J.R. (2006). Effect of antihypertensive agents on the development of type 2 diabetes mellitus. Mayo Clin Proc 81, 796-806. Surwit, R.S., Feinglos, M.N., Rodin, J., Sutherland, A., Petro, A.E., Opara, E.C., Kuhn, C.M., and Rebuffe-Scrive, M. (1995). Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44, 645-651. Tamura, K., Umemura, S., Yamakawa, T., Nyui, N., Hibi, K., Watanabe, Y., Ishigami, T., Yabana, M., Tanaka, S., Sekihara, H., et al. (1997). Modulation of tissue angiotensinogen gene expression in genetically obese hypertensive rats. Am J Physiol 272, R1704-1711. Tilg, H., and Hotamisligil, G.S. (2006). Nonalcoholic fatty liver disease: Cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 131, 934-945. Tilg, H., and Moschen, A.R. (2008). Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14, 222-231. Tong, Y.C., and Cheng, J.T. (2007). Alterations of M2,3-muscarinic receptor protein and mRNA expression in the bladder of the fructose fed obese rat. J Urol 178, 1537-1542. Torra, I.P., Chinetti, G., Duval, C., Fruchart, J.C., and Staels, B. (2001). Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 12, 245-254. Toye, A.A., Lippiat, J.D., Proks, P., Shimomura, K., Bentley, L., Hugill, A., Mijat, V., Goldsworthy, M., Moir, L., Haynes, A., et al. (2005). A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48, 675-686. Tsutsumi, K. (2003). Lipoprotein lipase and atherosclerosis. Curr Vasc Pharmacol 1, 11-17. van Raalte, D.H., Li, M., Pritchard, P.H., and Wasan, K.M. (2004). Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res 21, 1531-1538. Vanttinen, M., Nuutila, P., Kuulasmaa, T., Pihlajamaki, J., Hallsten, K., Virtanen, K.A., Lautamaki, R., Peltoniemi, P., Takala, T., Viljanen, A.P., et al. (2005). Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes 54, 3587-3591. Vaziri, N.D. (2006). Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol 290, F262-272. Velloso, L.A., Folli, F., Sun, X.J., White, M.F., Saad, M.J., and Kahn, C.R. (1996). Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A 93, 12490-12495. Vikrant, V., Grover, J.K., Tandon, N., Rathi, S.S., and Gupta, N. (2001). Treatment with extracts of Momordica charantia and Eugenia jambolana prevents hyperglycemia and hyperinsulinemia in fructose fed rats. J Ethnopharmacol 76, 139-143. Wakil, S.J., and Abu-Elheiga, L.A. (2009). Fatty acid metabolism: target for metabolic syndrome. J Lipid Res 50 Suppl, S138-143. Warwick, Z.S., and Schiffman, S.S. (1992). Role of dietary fat in calorie intake and weight gain. Neurosci Biobehav Rev 16, 585-596. White, J.S. (2008). Straight talk about high-fructose corn syrup: what it is and what it ain't. Am J Clin Nutr 88, 1716S-1721S. Wu, L., Wang, R., De Champlain, J., and Wilson, T.W. (2004). Beneficial and deleterious effects of rosiglitazone on hypertension development in spontaneously hypertensive rats. Am J Hypertens 17, 749-756. Xi, L., Qian, Z., Xu, G., Zheng, S., Sun, S., Wen, N., Sheng, L., Shi, Y., and Zhang, Y. (2007). Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem 18, 64-72. Yadav, H., Jain, S., and Sinha, P.R. (2007). Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23, 62-68. Yanai, H., Tomono, Y., Ito, K., Furutani, N., Yoshida, H., and Tada, N. (2008). The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr J 7, 10. Yang, W.S., Jeng, C.Y., Wu, T.J., Tanaka, S., Funahashi, T., Matsuzawa, Y., Wang, J.P., Chen, C.L., Tai, T.Y., and Chuang, L.M. (2002). Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 25, 376-380. Yin, J., Zhang, H., and Ye, J. (2008). Traditional chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets 8, 99-111. Yokozawa, J., Sasaki, T., Ohwada, K., Sasaki, Y., Ito, J.I., Saito, T., and Kawata, S. (2009). Down-regulation of hepatic stearoyl-CoA desaturase 1 expression by angiotensin II receptor blocker in the obese fa/fa Zucker rat: possible role in amelioration of insulin resistance and hepatic steatosis. J Gastroenterol. Zammit, V.A., Waterman, I.J., Topping, D., and McKay, G. (2001). Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance. J Nutr 131, 2074-2077. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43025 | - |
dc.description.abstract | 代謝症候群(MS)為血糖調節異常、高血脂、腹部肥胖及高血壓等危險因子中至少三項同時存在即可稱之。若未適當控制容易導致發展成為心血管疾病和第二型糖尿病等慢性病。本實驗室過去研究發現,山苦瓜(Momordica charantia L.) 具有改善代謝症候群之潛力,因此以其測試三種抗代謝症候群功能性評估動物模式之有效性。本研究旨在建立『抗代謝症候群』健康食品之功效評估方法。
比較高脂及高果糖飼料餵食12週所誘發代謝症候群之指標,觀察到高油脂飲食可誘發大鼠肥胖、腹部脂肪堆積、血糖調節異常、高胰島素血症、口服葡萄糖不耐、高血脂與高血壓,而高果糖飲食可誘發大鼠高血脂、高胰島素血症與高血壓,效果不若高油脂飲食引起MS那麼全面性。使用Teklad mixture和AIN-93G mixture的高果糖飼料,發現給予AIN-93G mixture配製的高果糖飼料,其無法誘發高血壓及肝脂堆積部份。檢測肝臟中基因表現,發現高果糖飼料顯著增加肝臟中脂肪合成作用基因之表現,但高脂飼料則無。高脂及高果糖飼料餵食後,造成腎周圍白色脂肪組織中的LPL和Agt基因表現下降。 給予高脂飲食誘發3週後,將山苦瓜凍乾粉末補充於高脂飲食餵食大鼠11週後觀察到降血脂和改善肝脂堆積效果。山苦瓜凍乾粉末補充於高果糖飼料餵食8週後,可觀察到顯著改善口服葡萄糖耐受性及抑制血壓升高。山苦瓜補充實驗中,高果糖飼料之誘導效果沒有第二章實驗明顯,可能與餵食時間長短、個體差異及每組動物隻數等有關。Rosiglitazone除了可以改善兩種飲食模式中所造成的高血脂、高胰島素血症、血糖調節異常和肝脂堆積外,亦可降低血壓。 Wy14643則可以降低體重、體脂堆積和肝脂堆積,但是增高血壓。文獻指出PPARs有降血壓功用,但在此次研究中則發現Wy14643無此效用。 比較 Chow diet、含蔗糖及不含蔗糖之AIN76 purified diet 餵食C57BL/6J 小鼠13週後之結果,含蔗糖之AIN-76飼料造成較高之體重增加、腹部脂肪堆積與血脂質增加等現象較為顯著,且胰島素濃度較高,故飲食中含蔗糖對於高血糖之影響比C57BL/6J小鼠遺傳背景所導致的影響來的明顯。 綜上所述,長期餵食大鼠12週以上高脂飲食,可全面發展出代謝症候群各指標症狀,本研究使用之山苦瓜樣品處理在短期間可以改善胰島素抗性,但長期則無。建議應用此模式時,餵食樣品期間縮短為4週。高果糖飲食模式需使用Teklad配方之礦物質及維生素混合物,餵食8週,山苦瓜樣品添加可觀察到血糖調節及血壓之改善。C57BL/6J小鼠模式則使用含50%蔗糖之AIN76飲食對於血糖影響更為明顯。 | zh_TW |
dc.description.abstract | Metabolic Syndrome (MS) is characterized by clustering of risk factors including: central obesity, hyperglycemia, dyslipidemia, insulin resistance and hypertension. MS is associated with a very high risk of developing cardiovascular disease and/or type 2 diabetes. This study aims at developing animal models for examining the anti-MS effect of functional food. Three rodent models were validated: 1) High fat diet-induced MS: Adult male Wistar male rats were fed a 30% fat diet in which 29% of fat source was butter for 14 weeks; 2) High fructose diet-induced MS: Adult male Wistar rats were fed a 60% fructose diet for 8 weeks; 3) 8.5 weeks old C57BL/6J mice were fed a AIN-76 purified diet. The last model was found to be hyperglycemic as their age and body weight increase. Since wild bitter gourd (Momordica charantia L.) has been found to improve MS, this sample is used to further validate the feasibility of these two models.
Full spectrum of MS was observed in high fat fed rats, including: higher abdominal fat accumulation, hyperinsulinemia, impaired glucose tolerance, hyperlipidemia and hypertension at 12 weeks. High fructose diet with Teklad mixture resulted in hyperlipidemia, hyperinsulinemia and hypertension. High fructose diet with AIN-93G mixture resulted in hyperlipidemia and hyperinsulinemia but no hypertension. The high fat diet-feeding and high fructose diet-feeding led to reduced lipoprotein lipase and angiotensinogen mRNA expression in retroperitoneal white adipose tissue. Improvement of some MS risk factors could be observed in the high fat diet and high fructose diet induced MS model with the supplementation of 0.5%, 1% and 5% wild bitter gourd powder (group 0.5BGP, 1BGP and 5BGP), but much less apparent in the long-term feeding of the high fat diet model. Compared to C57BL/6J mice fed chow diet, the AIN-76 purified diet fed mice showed increased body fat, hyperglycemia and hyperlipidemia. AIN-76 purified diet with 50% sucrose could induce more MS risk factors. In conclusion, these three models could be used to evaluate the anti-MS functional food. It is recommended that the total feeding period for the high fat diet-induced MS model is limited to around 4 weeks. The high fructose diet-induced MS model Teklad mixture is preferred and feeding period for 8 weeks is recommended. C57BL/6J mice fed AIN-76 diet with 50% sucrose could lead to higher blood sugar. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:33:21Z (GMT). No. of bitstreams: 1 ntu-98-R96b47304-1.pdf: 2469189 bytes, checksum: 79485736d55b373c7036c0911882f829 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 謝誌 i
中文摘要 iii 英文摘要 v 縮寫對照表 vii 組別縮寫意義 viii 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 2 一、代謝症候群 2 二、飲食誘導代謝症候群鼠模式 8 三、C57BL/6J自發性高血糖模式 12 四、過氧化體增殖劑活化受體 12 五、苦瓜 17 第三節 研究假說與架構 19 一、研究假說 19 二、實驗架構 19 第二章 比較高脂飲食與高果糖飲食誘導大鼠代謝症候群之特徵 21 第一節 前言 21 第二節 材料與方法 22 一、實驗設計 22 二、實驗飼料配置 22 三、動物飼養 26 四、血壓分析 26 五、樣品收集 26 六、血糖分析 27 七、血脂質分析 27 八、血清胰島素分析 28 九、肝臟脂質分析 29 十、Real-time QRTPCR 法分析肝臟及腎周圍脂肪中脂質代謝基因 mRNA表現量 30 十一、統計分析 32 第三節 結果 33 一、體重變化、攝食量、能量效率及臟器重量 33 二、血壓測定 33 三、血清葡萄糖及脂質濃度 33 四、血清胰島素及HOMA-IR 34 五、肝臟脂質測定 34 六、Real-time QRTPCR 法分析肝臟及腎周圍脂肪中脂質代謝基因mRNA表現量 34 第四節 討論 51 第三章 高脂飲食補充苦瓜、Rosiglitazone或Wy14643對大鼠代謝症候群之影響 57 第一節 前言 57 第二節 材料與方法 58 一、實驗設計 58 二、實驗飼料配置 59 三、動物飼養 60 四、血壓分析 61 五、樣品收集 61 六、血糖分析 61 七、血脂質分析 61 八、血清胰島素分析 61 九、血清adiponectin分析 61 十、肝臟及肌肉脂質分析 62 十一、Real-time QRTPCR 法分析腎周圍脂肪中脂質代謝基因mRNA表現量 63 十二、統計分析 63 第三節 結果 64 一、體重變化、攝食量、能量效率及臟器重量 64 二、血壓測定 65 三、血清葡萄糖及脂質濃度 65 四、血清胰島素及HOMA-IR 66 五、血清adiponectin濃度 66 六、肝臟脂質及肌肉脂質測定 66 七、Real-time QRTPCR 法腎周圍脂肪中Agt基因mRNA表現量 66 第四節 討論 88 第四章 高果糖飲食補充苦瓜、Rosiglitazone或Wy14643對大鼠代謝症候群之影響 93 第一節 前言 93 第二節 材料與方法 94 一、實驗設計 94 二、實驗飼料配置 95 三、動物飼養 96 四、血壓分析 97 五、樣品收集 97 六、血糖分析 97 七、血脂質分析 97 八、血清胰島素分析 97 九、血清adiponectin分析 97 十、血清中非酯化游離脂肪酸(Non-Esterified Fatty Acids, NEFA)含量測定 97 十一、血清尿酸分析 98 十二、肝臟及肌肉脂質分析 99 十三、統計分析 99 第三節 結果 100 一、體重變化、攝食量、能量效率及臟器重量 100 二、血壓測定 100 三、血清葡萄糖及脂質濃度 101 四、血清胰島素及HOMA-IR 101 五、血清adiponectin濃度 102 六、血清非游離脂肪酸(Non-Esterified Fatty Acids, NEFA)測定 102 七、血清尿酸濃度 102 八、肝臟脂質及肌肉脂質測定 102 第四節 討論 123 第五章 比較Chow diet,含或不含蔗糖之AIN76飼料對C57BL/6J小鼠血糖之影響 127 第一節 前言 127 第二節 材料與方法 128 一、實驗設計 128 二、實驗飼料配置 128 三、動物飼養 129 四、樣品收集 130 五、血糖分析 130 六、血脂質分析 130 七、血清胰島素分析 130 八、肝臟脂質分析 130 九、統計分析 130 第三節 結果 131 一、體重變化、攝食量、能量效率及臟器重量 131 二、血清葡萄糖及脂質濃度 131 三、血清胰島素及HOMA-IR 131 四、肝臟脂質濃度測定 132 第四節 討論 138 第六章 綜合討論與總結 139 第一節 綜合討論 139 第二節 總結 148 第七章 參考文獻 149 | |
dc.language.iso | zh-TW | |
dc.title | 代謝症候群動物模式之評估探討 | zh_TW |
dc.title | The Study on Rodent Model of Metabolic Syndrome | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂紹俊,趙蓓敏,吳亮宜,許珊菁 | |
dc.subject.keyword | 代謝症候群,高油脂飲食,高果糖飲食,Wistar,C57BL/6J,山苦瓜,胰島素抗性, | zh_TW |
dc.subject.keyword | metabolic syndrome,high fat diet,high fructose diet,Wistar rats,C57BL/6J mice,Momordica charantia L.,insulin resistance, | en |
dc.relation.page | 159 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-20 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。