Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孝文
dc.contributor.authorYen-Wei Chengen
dc.contributor.author鄭炎煒zh_TW
dc.date.accessioned2021-06-15T01:32:38Z-
dc.date.available2012-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-16
dc.identifier.citationChapter 1
1. Fick A. Concerns diffusion and concentration gradient. Ann Phys Lpz 1855;170:159.
2. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 1905; 17:549-560.
3. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of time-dependent field gradient. Journal of Chemical Physics 1965; 42:288-292.
4. Basser PJ, Mattiello, Lebihan D. MR diffusion Tensor Spectroscopy and Imaging. Biophysical Journal 1994; 66:259-267.
5. Alexander AL, Hasan K, Kindlmann G, Parker DL, Tsuruda JS. A geometric analysis of diffusion tensor measurements of human brain. Magnetic Resonance in Medicine 2000; 44:283-291.
6. Chu Z, Wilde EA, Hunter JV, McCauley SR, Bigler ED, Troyanskaya M, Yallampalli R, Chia JM, Levin HS. Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescent. American Journal of Neuroradiology 2010; 31:340-346.
7 Clark CA, Barrick TR, Murphy MM, Bell BA. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage 2003; 20:1601-1618.
8. Zarei M, Patenaude B, Damoiseaux J, Morgese C, Smith S, Matthews PM, Barkhof F, Rombouts S, Sanz-Arigita E, Jenkinson M. Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer's disease. Neuroimage 2010; 49:1-8.
9. Kan JH, Heemskerk AM, Ding Z, Gregory A, Mencio G, Spindler K, Damon BM. DTI-based muscle fiber tracking of the quadriceps mechanism in lateral patellar dislocation. Journal of Magnetic Resonance Imaging 2009; 29:663-670.
10. Wu EX, Wu Y, Tang H, Wang J, Yang J, Ng MC, Yang ES, Chan CW, Zhu S, Lau CP, Tse HF. Study of myocardial fiber pathway using magnetic resonance diffusion tensor imaging. Magnetic Resonance Imaging. 2007; 25:1048-57.
11. Wiegell MR, Larsson HB, Wedeen VJ. Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 2000; 217:897-903.
12. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 2004; 23:1176-1185.
13. Tristán-Vega A, Westin CF, Aja-Fernández S. Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. Neuroimage 2009; 47:638-650.
14. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine 2002; 48:577-582.
15. Hong X, Arlinghaus LR, Anderson AW. Spatial normalization of the fiber orientation distribution based on high angular resolution diffusion imaging data. Magnetic Resonance in Medicine 2009; 61:1520-1527.
16. Hosey T, Williams G, Ansorge R. Inference of multiple fiber orientations in high angular resolution diffusion imaging. Magnetic Resonance in Medicine 2005; 54:1480-1489.
17. Liu C, Mang SC, Moseley ME. In vivo generalized diffusion tensor imaging (GDTI) using higher-order tensors (HOT). Magnetic Resonance in Medicine 2010; 63:243-252.
18. Zhan W, Stein EA, Yang Y. A rotation-invariant spherical harmonic decomposition method for mapping intravoxel multiple fiber structures. Neuroimage 2006; 29:1212-1223.
19. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine 2005; 54:1377-86.
20. Tuch DS. Q-ball imaging. Magnetic Resonance in Medicine 2004; 52:1358-72.
Chapter 2
1. Haselgrove JC, Moore JR. Correction for distortion of echo-planarimages used to calculate the apparent diffusion coefficient. Magnetic Resonance in Medicine 1986; 36:960–964.
2. Aksoy M, Liu C, Moseley ME, Bammer R. Single-Step Nonlinear Diffusion Tensor Estimation in the Presence of Microscopic and Macroscopic Motion. Magnetic Resonance in Medicine 2008; 59:1138-1150.
3. Kharbanda HS, Alsop DC, Anderson AW, Filardo G, Hackney DB. Effects of Cord Motion on Diffusion Imaging of the Spinal Cord. Magnetic Resonance in Medicine 2006; 56:334-339.
4. Chang L, Jones DK, Pierpaoli C. RESTORE: robust estimation of tensors by outlier rejection. Magnetic Resonance in Medicine 2005; 53: 1088–1095.
5. Skare S, Andersson JL. On the effects of gating in diffusion imaging of the brain using single shot EPI. Magnetic Resonance Imaging. 2001;19:1125-1128.
6. Chavez S, Storey P, Graham SJ. Robust Correction of Spike Noise: Application to Diffusion Tensor Imaging. Magnetic Resonance in Medicine 2009; 62: 510-519.
7. Gallichan G, Scholz J, Bartsch A, Behrens, TE, Robson MD, Miller KL. Addressing a systematic vibration artifact in diffusion-weighted MRI. Human Brain Mapping 2010; 31:193-202.
8. Hiltunen J, Hari R, Jousmaki V, Muller K, Sepponen R, Joensuu R. Quantification of mechanical vibration during diffusion tensorimaging at 3T. NeuroImage 2006; 32:93–103.
9. Sharman MA, Cohen-Adad J, Descoteaux M, Messé A, Benali H, Lehericy S. Impact of Outliers in DTI and Q-Ball Imaging - Clinical Implications and Correction Strategies. International Society of Magnetic Resonance in Medicine, Stockholm, May. 2010.
10. Gui M, Tamhane A.A., and Arfanakis K. Contribution of cardiac-induced brain pulsation to the noise of the diffusion tensor in Turboprop diffusion tensor imaging (DTI). Journal of Magnetic Resonance Imaging 2008; 27: 1164-1168.
11. Leemans A, Jones DK. The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine 2009; 61: 1336-1349.
12. Chung S, Courcot B, Sdika M, Moffat K, Rae C, Henry RG. Bootstrap quantification of cardiac pulsation artifact in DTI. Neuroimage 2010; 49:631-640.
13. Jiang H, Golay X, van Zijl PC, Mori S. Origin and minimization of residual motion-related artifacts in navigator-corrected segmented diffusion-weighted EPI of the human brain. Magnetic Resonance in Medicine 2002; 47: 818-822.
14. Jiang H, Chou MC, Zijl van PC and Mori S. Outlier Detection for Diffusion Tensor Imaging by testing for ADC Consistency. International Society of Magnetic Resonance in Medicine, Honolulu, Apr. 2009.
15. Sharman M A, Cohen-Adad J, Descoteaux M, Messé A, Benali H, Lehericy S. Impact of outliers on diffusion tensor and Q-ball imaging: Clinical implications and correction strategies. Journal of Magnetic Resonance Imaging 2011; 33:1491-1502.
Chapter 3
1. Tuch DS. Q-ball imaging. Magnetic Resonance in Medicine 2004; 52:1358-72.
2. Kuo LW, Chen JH, Wedeen VJ, Tseng WYI. Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. NeuroImage 2008; 41:7-18.
3. Cho KH, Yeh CH, Chao YP, Wang JJ, Chen JH, Lin CP. Potential in reducing scan times of HARDI by accurate correction of the cross-term in a hemispherical encoding scheme. Journal of Magnetic Resonance Imaging 2009; 29:1386-1394.
4. Ichikawa T, Araki T. Fast magnetic resonance imaging of liver. European Journal of Radiology 1999; 29:186-210.
5. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magnetic Resonance in Medicine 2004; 51:103-114.
6. Parker J, Kenyon RV, Troxel DE. Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging 1983; 2:31-39.
7. Hamarneh G, Hradsky J. Bilateral filtering of diffusion tensor magnetic resonance images. IEEE Transactions on Image Processing 2007; 16: 2463-2675.
8. Papadakis NG, Smponias T, Berwick J, Mayhew JE. k-space correction of eddy-current-induced distortions in diffusion-weighted echo-planar imaging. Magnetic Resonance in Medicine 2005; 53:1103-1111.
9. Bodammer N, Kaufmann J, Kanowski M, Tempelmann C. Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magnetic Resonance in Medicine 2004; 51:188-193.
10. Jezzard P, Barnett AS, Pierpaoli C Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magnetic Resonance in Medicine 1998; 39:801-12.
Chapter 4
1. Sharman M A, Cohen-Adad J, Descoteaux M, Messé A, Benali H, Lehericy S. Impact of outliers on diffusion tensor and Q-ball imaging: Clinical implications and correction strategies. Journal of Magnetic Resonance Imaging 2011; 33:1491-1502.
2. Zhou Z, Liu W, Cui J, Wang X, Arias D, Wen Y, Bansal R, Hao X, Wang Z, Peterson BS, Xu D. Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares. Magnetic Resonance Imaging 2011; 29:230-242.
3. Holdsworth SJ, Skare S, Newbould RD, Bammer R. Robust GRAPPA-accelerated diffusion-weighted readout-segmented (RS)-EPI. Magnetic Resonance in Medicine. 2009; 62:1629-1640.
4. Shi X, Kholmovski EG, Kim SE, Parker DL, Jeong EK. Improvement of accuracy of diffusion MRI using real-time self-gated data acquisition. NMR in Biomedicine. 2009; 22:545-550.
5. Dubois J, Poupon C, Lethimonnier F, Le Bihan D. Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets. Magnetic Resonance Materials in Physics, Biology and Medicine 2006; 19:134-143.
Chapter 5
1. Tuch DS. Q-ball imaging. Magnetic Resonance in Medicine 2004; 52:1358-1372.
2. Zhan W, Yang Y. How accurately can the diffusion profiles indicate multiple fiber orientations? A study on general fiber crossings in diffusion MRI. Journal of Magnetic Resonance 2006; 183:193-202.
3. Mukherjee P, Hess CP, Xu D, Han ET, Kelley DA, Vigneron DB. Development and initial evaluation of 7-T q-ball imaging of the human brain. Magnetic Resonance Imaging 2008; 26:171-180.
4. Cho KH, Yeh CH, Tournier JD, Chao YP, Chen JH, Lin CP. Evaluation of the accuracy and angular resolution of q-ball imaging. Neuroimage 2008 ; 42:262-271.
5. Fritzsche KH, Laun FB, Meinzer HP, Stieltjes B. Opportunities and pitfalls in the quantification of fiber integrity: What can we gain from Q-ball imaging? Neuroimage 2010; 51:242-251.
6. Ehricke HH, Otto KM, Klose U. Regularization of bending and crossing white matter fibers in MRI Q-ball fields. Magnetic Resonance Imaging. 2011 Jun 24. [Epub ahead of print].
7. Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Regularized, fast, and robust analytical Q-ball imaging. Magnetic Resonance in Medicine 2007; 58:497-510.
8. Campbell JS, Siddiqi K, Rymar VV, Sadikot AF, Pike GB. Flow-based fiber tracking with diffusion tensor and q-ball data: validation and comparison to principal diffusion direction techniques. Neuroimage 2005; 27:725-736.
9. Ichikawa T, Araki T. Fast magnetic resonance imaging of liver. European Journal of Radiolory 1999; 29:186-210.
10. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magnetic Resonance in Medicine 2004; 51:103-114.
11. Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Transactions on Medical Imaging. 2010; 29:1626-1635.
12. Yeh FC, Wedeen VJ, Tseng WY. Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage 2011; 55:1054-1062.
13. Parker J, Kenyon RV, Troxel DE. Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging 1983; 2:31-39.
14. Hamarneh G, Hradsky J. Bilateral filtering of diffusion tensor magnetic resonance images. IEEE Transactions on Image Processing 2007; 16: 2463-2675.
15. Leemans A, Jones DK. The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine 2009; 61: 1336-1349.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43009-
dc.description.abstract目的
Q球造影是解開像素中神經纖維交會的一種擴散造影技術。然而使用面回訊的擴散權重影像,經常會發生影像的缺損,降低神經纖維方向與追蹤的準確性。因此本實驗的目的是提出一個適當的後處理法方法來回復缺損影像,不增加掃瞄時間並且能修正神經纖維方向與追蹤。
材料與方法
在3T的磁振造影掃描器內收集一位健康受試者的Q球造影資料。在驗證的程序中,我們先經由一百次重複掃瞄,觀察異常的訊號的特性,並使用心電圖限制延遲激發來消除異常的訊號。然後經由連續重複兩次的252方向Q球造影來得到參考資料,修補損壞的擴散權重影像訊號的方法是採用對稱補償法和鄰點內差法。我們把修正前的缺損資料和修正後的更正資料和參考資料相比較,觀察擴散權重影像和方位分佈函數的改變。
在模擬程序中,強度降低兩倍、數目增加兩倍和隨機產生的缺損訊號等用來測試鄰點補償法,並求最佳的閥值。在修正的程序中,先使用軟體和中位數濾波器在真實空間來對位和平滑原始影像。然後將受損影像和其相鄰的六個擴散方向的影像相比,接著將受損影像中低於閥值低訊號的畫素,用其Q空間上相鄰六個點訊號的距離倒數加權平均來修正。最後比較使用鄰點內差法前後,方位分佈函數和纖維追蹤結果與指標的變化。
結果
研究顯示異常訊號是強度減弱型,心電圖限制延遲激發不能消除所有的異常訊號,所以不能作為252方向Q球造影參考資料。用鄰點內差法來修復擴散權重影像並大幅降低方位分佈函數誤差,在三個程序中都是可行的,它也些微增加纖維追蹤的指標。
結論
在這個研究中,我們驗證缺損影像造成方位分佈函數和纖維追蹤的誤差,是可以用鄰點內差法來修復且不增加掃瞄時間。因此我們推定所提出的鄰點內差法是處理Q球造影資料的合適工具。
zh_TW
dc.description.abstractObjective
Q-ball imaging (QBI) was a diffusion imaging technique capable of resolving intra-voxel fiber crossings. However, corrupted images were often found to occur in diffusion-weighted image (DWI) by Echo Planar Imaging (EPI), downgrading the accuracy of fiber orientations and tracking. Therefore, the purpose of this study was to propose a suitable post-processing method to restore the corrupted images, and correct the fiber orientations and tracking.
Materials and Methods
QBI data were collected from a healthy subject at a 3T MR scanner. In validation procedure, we observed the characteristics of outlier signals by 100 repeated scans and used ECG gating trigger to delay delete all corrupted signals. Then, we got the reference data by 2 repeated scans in 252 QBI. Afterwards, the algorithms using neighboring interpolation (NI) and symmetrical compensation (SC) methods were applied to remedy the corrupted signals in DWIs. Finally, DWIs and the orientation distribution function (ODF) were compared with those of the reference data before and after correction.
In simulation procedure, neighboring interpolation was tested by simulated double drop, twice and randomly corrupted signals to find optimal thresholds. In correction procedure, a software and a median filter were used to register and smooth the images in real space. Then the corrupted images were compared by with their six neighboring direction images. Afterwards, the low signal pixels below the threshold in corrupted images were corrected by the distance weighted average of their six neighboring in Q-space. Finally, the orientation distribution function (ODF), fiber tracking results and indices were compared before and after neighboring interpolation correction.
Results
The study showed the outliers were decreasing signals and ECG gating trigger delay couldn’t delete all corrupted signals, so it couldn’t be a reference data for 252 QBI. The neighboring interpolation correction was feasible to restore corrupted DWIs and reduce the ODF errors greatly in three procedures. It also improved the fiber tracking indices slightly.
Conclusions
In this study, we demonstrated that ODFs and fiber tracking in QBI were altered by corrupted images, which were and recovered by the neighboring interpolation without increasing scan time. Therefore, we concluded that the proposed neighboring interpolation method was a suitable adjunct for QBI data processing.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:32:38Z (GMT). No. of bitstreams: 1
ntu-100-D91921019-1.pdf: 2547657 bytes, checksum: aa4882873275a69267eebdf848cc1f79 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
口試委員會審訂書
論文致謝...........................................................................................................................a
中文摘要............................................................................................................................i
Abstract……………………………………………………….……………………...…iii
Table of Contents…………………………………………………………………...……v
List of Figures………………………………...……………………………………….viii
List of Tables…………………………………………………………………………..xiii
Chapter 1 Introduction to Diffusion MRI
1.1 NMR Diffusion Signals……………………..……………...…………1
1.2 Diffusion Weighted Imaging………………………………………....4
1.3 Diffusion Tensor Imaging…………………………………………….6
1.4 High Angular Resolution Diffusion Imaging……………………..…12
1.5 Q-ball Imaging………………………………………………………15
References…………………………...…………………………………...18
Chapter 2 Motivation: Observation of Corrupted Images in Q-ball Imaging
2.1 Introduction…………………………..……………………………….20
2.2 Paper Survey……………………………………………..……………25
2.3 Observation of One Hundred Repeated Scans in Diffusion Weighting Imaging………………………………………………...….……….....26
2.4 Observation of One Hundred Repeated Scans in Diffusion Weighting Imaging without and with Trigger Delay…………………….………30
2.5 Observation of Repeated Scans in Q-Ball Imaging……………..……...32
References………………………………...………………………………34
Chapter 3 Error Evaluation and Data Correction for the Corrupted Images in Q-ball Imaging: In Vivo Validation
3.1 Materials and Methods………………………………..…….....……...36
3.2 Results……………………………………...…………………………39
3.3 Discussions and conclusions ................................................................46
References………………………………………………………………...48
Chapter 4 Error evaluation and data correction for Simulated Corrupted Signals in Q-ball Imaging
4.1 Materials and Methods………………………...……………………...49
4.2 Results…………..………………………………………….…………52
4.3 Discussions and Conclusions………………………………..………...60
References……………………………………………..………...………..62
Chapter 5 Correction Procedure of Corrupted Images in Q-ball Imaging
5.1 Introduction…………………………………………………………...63
5.2 Methods……………………………………………….………………65
5.2.1 The Distribution of 252 Sampling Points in Q-ball……………..65
5.2.2 The Distances and Angles among 252 Sampling Points………..66
5.2.3 Neighboring Interpolation and Fiber Tracking Methods………..68
5.3 Results………………………………………………………………...69
5.4 Discussions and Conclusions………………………………………….74
References………………………………………………………………...77
Appendix A Notations………………………………...………………………………..79
Appendix B Abbreviations………………………………...……...……………………80
dc.language.isoen
dc.subjectQ球造影zh_TW
dc.subject擴散權重影像zh_TW
dc.subject方位分佈函數zh_TW
dc.subject缺損影像zh_TW
dc.subject心電圖限制延遲發zh_TW
dc.subject對稱補償法zh_TW
dc.subject鄰點內差法zh_TW
dc.subject擴散頻譜影像工作室zh_TW
dc.subjectDSI Studioen
dc.subjectQBIen
dc.subjectDWIen
dc.subjectODFen
dc.subjectcorrupted imagesen
dc.subjectECG gating trigger delayen
dc.subjectsymmetrical compensationen
dc.subjectneighboring interpolationen
dc.titleQ球擴散影像中缺損影像的誤差評估與資料修正zh_TW
dc.titleError Evaluation and Data Correction for the Corrupted Images in Q-ball Imagingen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor周銘鐘
dc.contributor.oralexamcommittee陳震宇,曾文毅,王俊杰,黃騰毅,莊子肇,王福年
dc.subject.keywordQ球造影,擴散權重影像,方位分佈函數,缺損影像,心電圖限制延遲發,對稱補償法,鄰點內差法,擴散頻譜影像工作室,zh_TW
dc.subject.keywordQBI,DWI,ODF,corrupted images,ECG gating trigger delay,symmetrical compensation,neighboring interpolation,DSI Studio,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2011-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved