請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42961完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊宏 | |
| dc.contributor.author | Tzu-Chieh Chen | en |
| dc.contributor.author | 陳姿潔 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:30:34Z | - |
| dc.date.available | 2014-07-24 | |
| dc.date.copyright | 2009-07-24 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-21 | |
| dc.identifier.citation | 1. Imlay, J. A. (2008) Annu Rev Biochem 77, 755-776
2. Nathan, C., Nogueira, N., Juangbhanich, C., Ellis, J., and Cohn, Z. (1979) J Exp Med 149, 1056-1068 3. Scharffetter-Kochanek, K., Wlaschek, M., Brenneisen, P., Schauen, M., Blaudschun, R., and Wenk, J. (1997) Biol Chem 378, 1247-1257 4. Agnieszka Ligeza, A. N. T., James S. Hyde and Witold K. Subczynski. (1998) Biochim Biophys Acta 1365, 453-463 5. Flint, D. H., Smyk-Randall, E., Tuminello, J. F., Draczynska-Lusiak, B., and Brown, O. R. (1993) J Biol Chem 268, 25547-25552 6. Flint, D. H., Tuminello, J. F., and Emptage, M. H. (1993) J Biol Chem 268, 22369-22376 7. Kuo, C. F., Mashino, T., and Fridovich, I. (1987) J Biol Chem 262, 4724-4727 8. Henle, E. S., Han, Z., Tang, N., Rai, P., Luo, Y., and Linn, S. (1999) J Biol Chem 274, 962-971 9. Imlay, J. A., Chin, S. M., and Linn, S. (1988) Science 240, 640-642 10. Imlay, J. A., and Linn, S. (1988) Science 240, 1302-1309 11. Barsacchi, R., Nanni, N., Camici, P., Pelosi, G., Lazzerini, G., Delchiaro, D., and Ursini, F. (1985) J Mol Cell Cardiol 17, 111-111 12. Towell, J. F., and Wang, R. I. H. (1985) Alcohol Clin Exp Res 9, 202-202 13. Zmijewski, J. W., Landar, A., Watanabe, N., Dickinson, D. A., Noguchi, N., and Darley-Usmar, V. M. (2005) Biochem Soc Trans 33, 1385-1389 14. Fahey, R. C., Brown, W. C., Adams, W. B., and Worsham, M. B. (1978) J Bacteriol 133, 1126-1129 15. Fahey, R. C., and Sundquist, A. R. (1991) Adv Enzymol Relat Areas Mol Biol 64, 1-53 16. Penninckx, M. J., and Elskens, M. T. (1993) Adv Microb Physiol 34, 239-301 17. Meister, A. (1988) J Biol Chem 263, 17205-17208 18. Ghezzi, P. (2005) Free Radic Res 39, 573-580 19. Masip, L., Veeravalli, K., and Georgioui, G. (2006) Antioxid Redox Signal 8, 753-762 20. Gallogly, M. M., and Mieyal, J. J. (2007) Curr Opin Pharmacol 7, 381-391 21. Aslund, F., Zheng, M., Beckwith, J., and Storz, G. (1999) Proc Natl Acad Sci U S A 96, 6161-6165 22. M P Barrett, D. W. B. R. B. R. R. T. (2007) Br J Pharmacol 152, 1155-1171 23. Reithinger, R., Dujardin, J.-C., Louzir, H., Pirmez, C., Alexander, B., and Brooker, S. (2007) Lancet Infect Dis 7, 581-596 24. Fairlamb, A. H., and Cerami, A. (1992) Annu Rev Microbiol 46, 695-729 25. R. Luise Krauth-Siegel, H. B. R. H. S. (2005) Angew Chem Int Ed Engl 44, 690-715 26. Comini, M. A., Guerrero, S. A., Haile, S., Menge, U., Lunsdorf, H., and Flohe, L. (2004) Free Radic Biol Med 36, 1289-1302 27. Henderson, G. B., Yamaguchi, M., Novoa, L., Fairlamb, A. H., and Cerami, A. (1990) Biochemistry 29, 3924-3929 28. Smith, K., Nadeau, K., Bradley, M., Walsh, C., and Fairlamb, A. H. (1992) Protein Sci 1, 874-883 29. Bollinger, J. M., Kwon, D. S., Huisman, G. W., Kolter, R., and Walsh, C. T. (1995) J Biol Chem 270, 14031-14041 30. Dubin, D. T. (1959) Biochem Biophys Res Commun 1, 262-265 31. Tabor, H., and Tabor, C. W. (1975) J Biol Chem 250, 2648-2654 32. Kwon, D. S., Lin, C. H., Chen, S. J., Coward, J. K., Walsh, C. T., and Bollinger, J. M. (1997) J Biol Chem 272, 2429-2436 33. Pai, C. H., Chiang, B. Y., Ko, T. P., Chou, C. C., Chong, C. M., Yen, F. J., Chen, S., Coward, J. K., Wang, A. H., and Lin, C. H. (2006) EMBO J 25, 5970-5982 34. Okar, D. A., Wu, C., and Lange, A. J. (2004) Adv Enzyme Regul 44, 123-154 35. Ramstrom, H., Sanglier, S., Leize-Wagner, E., Philippe, C., Van Dorsselaer, A., and Haiech, J. (2003) J Biol Chem 278, 1174-1185 36. Lin, C. H., Kwon, D. S., Bollinger, J. M., Jr., and Walsh, C. T. (1997) Biochemistry 36, 14930-14938 37. Fairlamb, A. H. (1988) Adv Exp Med Biol 250, 667-674 38. Ariyanayagam, M. R., and Fairlamb, A. H. (2001) Mol Biochem Parasitol 115, 189-198 39. Smith, K., Borges, A., Ariyanayagam, M. R., and Fairlamb, A. H. (1995) Biochem J 312, 465-469 40. Chattopadhyay, M. K., Tabor, C. W., and Tabor, H. (2003) Proc Natl Acad Sci U S A 100, 2261-2265 41. Rider, J. E., Hacker, A., Mackintosh, C. A., Pegg, A. E., Woster, P. M., and Casero, R. A. (2007) Amino Acids 33, 231-240 42. Lovaas, E., and Carlin, G. (1991) Free Radic Biol Med 11, 455-461 43. Tadolini, B., Cabrini, L., Landi, L., Varani, E., and Pasquali, P. (1984) Biochem Biophys Res Commun 122, 550-555 44. Jung, I. L., and Kim, I. G. (2003) Biochem Biophys Res Commun 301, 915-922 45. Shim, H., and Fairlamb, A. H. (1988) J Gen Microbiol 134, 807-817 46. Fairlamb, A. H., Henderson, G. B., Bacchi, C. J., and Cerami, A. (1987) Mol Biochem Parasitol 24, 185-191 47. Beis, I., and Newsholme, E. A. (1975) Biochem J 152, 23-32 48. Steenkamp, D. J. (1993) Biochem J 292, 295-301 49. Oza, S. L., Ariyanayagam, M. R., and Fairlamb, A. H. (2002) Biochem J 364, 679-686 50. Sedlak, T. W., and Snyder, S. H. (2004) Pediatrics 113, 1776-1782 51. Rigato, I., Ostrow, J. D., and Tiribelli, C. (2005) Trends Mol Med 11, 277-283 52. Sedlak, T. W., Saleh, M., Higginson, D. S., Paul, B. D., Juluri, K. R., and Snyder, S. H. (2009) Proc Natl Acad Sci U S A 106, 5171-5176 53. Wick, L. M., and Egli, T. (2004) Adv Biochem Eng Biotechnol 89, 1-45 54. Stephens, J. C., Artz, S. W., and Ames, B. N. (1975) Proc Natl Acad Sci U S A 72, 4389-4393 55. Murray, K. D., and Bremer, H. (1996) J Mol Biol 259, 41-57 56. Melchers, J., Dirdjaja, N., Ruppert, T., and Krauth-Siegel, R. L. (2007) J Biol Chem 282, 8678-8694 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42961 | - |
| dc.description.abstract | Glutathionylspermidne (Gsp) 是由glutathione和spermidine以醯胺鍵 (amide bond) 鍵結而形成的化合物。由於Gsp只存在於單細胞原蟲寄生蟲及大腸桿菌等菌體中,故與Gsp代謝相關的酵素被視為抗寄生蟲藥物發展的目標。Glutathionylspermidine synthetase/amidase (GspSA) 是一個雙功能性的酵素,它同時具有glutathionylspermidine synthetase (Gsp synthetase) 和glutathionylspermidine amidase (Gsp amidase) 兩個功能性區塊 (functional domain),分別具有生成和降解Gsp的能力 (如下圖所示)。雖然大約13年以前就已經發現在大腸桿菌中具有GspSA的存在,但究竟GspSA在大腸桿菌中是扮演什麼角色?Gsp這個分子在大腸桿菌中具有什麼樣的功能?以及GspSA在菌體中是如何調控它兩個相反活性的功能區塊?一直以來都還沒有定論。
在先前的研究中發現在過氧化氫 (hydrogen peroxide, H2O2) 的處理下,GspSA會發生選擇性抑制,即Gsp amidase會因為active site中的cysteine-59受氧化而失去活性,但Gsp synthetase的活性不受影響。為了探討GspSA兩個功能區塊的調控方式,和瞭解如何調控Gsp的濃度,本論文建立了一套能靈敏偵測含硫醇 (thiol) 之分子的分析方法。先使用monobromobimane (mBBr) 與thiol分子進行衍生化,產生具有螢光之產物後,再利用HPLC進行對thiol分子的定性與定量分析。 利用此方法,我們發現在in vitro或in vivo的實驗中,過氧化氫的處理下都會造成Gsp amidase的選擇性抑制,並且導致Gsp快速而大量的累積,在此同時菌體中GspSA的蛋白質表現量則維持固定。此外我們也發現在營養不足及厭氧的條件下菌體中的Gsp也會有累積的情況發生。 最後,我們提出一個模式 (model) 藉以解釋在氧化壓力之下,大腸桿菌如何透過GspSA 調控菌體內的氧化還原平衡;此模式除了指出Gsp amidase的選擇性抑制會造成Gsp的累積,同時也解釋了Gsp disulfide (一種Gsp的氧化形式) 可以藉由Gsp amidase及GSH reductase兩種酵素的協同作用,而得以回復成GSH及spermidine,進而達成生理環境下thiol的平衡。 | zh_TW |
| dc.description.abstract | Glutathionylspermidine (Gsp), the conjugate of glutathione and spermidine, only appears in some parasitical protozoa or bacteria such as Escherichia coli. Therefore, the enzymes involved in Gsp metabolism are considered as the targets for anti-parasitic drugs. Glutathionylspermidine synthetase/amidase (GspSA) is a bifunctional enzyme to catalyze the biosynthesis and hydrolysis of Gsp shown as follows. Although GspSA was identified in Escharichia coli more than a decade ago, several issues still remain ambiguous. For instance, the physiological functions of Gsp and GspSA in E. coli are not clear. There is no clear answer regarding to how the two opposite activities of GspSA (Gsp synthetase and Gsp amidase) communicate.
In the previous study, Gsp amidase was found to be selectively inactivated in the presence of hydrogen peroxide (H2O2) owing to temporary oxidation of cysteine-59 in the active site. In contrast, the activity of Gsp synthetase remained intact. In order to understand the regulation of GspSA and the Gsp turnover, a sensitive method was thus developed for monitoring the amount of small thiols by derivatization with mBBr, followed by HPLC analysis. In the in vitro and in vivo study, the Gsp level was found to be accumulative due to selective inactivation of Gsp amidase by H¬2O2, in contrast to the constant expression level of GspSA. In addition, Gsp was also found to increase under starvation or anaerobic conditions. A GspSA-based model was proposed to interpret how E. coli regulates the intracellular redox balance under oxidative stress. In addition to explaining how selective inactivation of Gsp amidase leading to the accumulation of Gsp, the model also demonstrates that Gsp disulfide, the oxidative form of Gsp, could be regenerated to GSH and spermidine by the Gsp amidase and GSH reductase couple. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:30:34Z (GMT). No. of bitstreams: 1 ntu-98-R96B46013-1.pdf: 2697311 bytes, checksum: bcc4fb0fdfac874ec65e559984033ba6 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 縮寫表i
中文摘要ii 英文摘要iv 第一章 緒論 1.1 氧化壓力(1) 1.2 抗氧化系統(2) 1.2.1 一般生物體的抗氧化系統(3) 1.2.2 單細胞原蟲寄生蟲及原生動物中之抗氧化系統(5) 1.3 Glutathionylspermidine synthetase/amidase(7) 1.3.1 Glutathionylspermidine synthetase/amidase的簡介(7) 1.4 Glutathionylspermidine簡介及其相關研究(9) 1.4.1 Glutathionylspermidine可能參與了生物體內之抗氧化系統─化學性質上之證據(9) 1.4.2 Glutathionylspermidine可能參與了生物體內之抗氧化系統─基因(genetic)上之證據(10) 1.5 研究目的(12) 1.6 實驗流程圖(15) 第二章、材料與方法 2.1 實驗藥品(16) 2.2 thiol小分子的mBBr衍生物之性質分析以及分離方法建立(16) 2.2.1 thiol小分子之mBBr衍生化(16) 2.2.2 薄層層析法 (Thin layer chromatography, TLC)(16) 2.3 以高效液能層析 (High performance liquid chromatography)之方法對thiol小分子之mBBr衍生物進行分離分析(17) 2.3.1 使用YMC-ODS-A管柱進行分離分析(17) 2.3.2 使用mono-S管柱進行分離分析(17) 2.3.3 離子對高效液相層析 (ion-pair HPLC)(17) 2.3.3.1 離子對高效液相層析的原理(17) 2.3.3.2 離子對高效液相層析的使用(18) 2.3.4 Glutathione及Gsp之檢量線的建立(19) 2.3.4.1 Glutathione之檢量線的建立(19) 2.3.4.2 Gsp之檢量線的建立(19) 2.4 質譜分析(MALDI-TOF analysis)(20) 2.5 在in vitro情況下觀察GSP生成情況(20) 2.5.1 在ATP限量的情況下偵測Gsp的生成情況(20) 2.5.1.1 在酵素反應初期加入過氧化氫影響酵素活性(20) 2.5.1.2 在加入catalase之情況下進行酵素反應(21) 2.5.2 在加入catalase及ATP回復系統 (regeneration system) 的情況下進行酵素反應(22) 2.5.3 酵素反應樣品之mBBr衍生化(23) 2.6 以in vivo實驗觀察在生物體中Gsp累積的情況(24) 2.6.1 使用的菌種(24) 2.6.2 使用的培養液(24) 2.6.3 生長曲線測定(24) 2.6.4 in vivo情況下測量Gsp的累積情況(25) 2.6.4.1 測量菌體生長時菌體中Gsp含量的變化情形(25) 2.6.4.2 在in vivo之情況下對菌體處理過氧化氫(25) 2.6.5 厭養培養的方法(26) 2.6.6 對菌體中之thiol小分子進行mBBr衍生化(26) 2.7 蛋白質定量法 (採用Bradford法) (27) 2.8 蛋白質膠體電泳分析 (Polyacrylamide Gel Electrophoresis)(28) 2.9 西方點墨法 (Western blotting)(29) 2.10使用Gsp amidase的活性標示探針 (active-based probe) 探測Gsp amidase的活性(30) 2.10.1 以in vitro實驗測試活性標示探針的使用情況(30) 第三章、實驗結果 Part I 硫醇 (thiol)分子之分析方法建立 3.1 使用高效液相層析建立含有thiol之分子的分析方法(31) 3.1.1 Thiol小分子的deriviation(31) 3.1.2 極性分析(31) 3.1.3 使用不同的HPLC管柱進行樣品分離分析(32) 3.1.4 使用ion-pair HPLC進行分析(33) 3.1.5 建立glutathionylspermidine以及glutathione的檢量線(34) Part II Glutathionylspermidine synthetase/amidase的相關調控 3.2 Glutathionylspermidine synthetase/amidase之兩個活性單位在菌體中可能都是處於活化的狀態(35) Part III in vitro實驗 3.3 過氧化氫對glutathionylspermidine synthetase/amidase酵素的影響(37) 3.3.1 過氧化氫對gltathionylspermidine synthetase/amidase產生選擇性抑制(37) 3.3.2 過氧化氫的處理造成產物glutathionylspermidine的快速累積(38) Part IV in vivo實驗 3.4 過氧化氫對大腸桿菌中glutathionylspermidine synthetase/amidase的影響(42) 3.4.1 過氧化氫造成菌體中glutathionylspermidine的快速累積(42) 3.4.2 過氧化氫的使用在短時間內不影響glutathionylspermidine synthetase/amidase的表現(43) 3.4.3 過氧化氫的使用造成大腸桿菌菌體中glutathionylspermidine amidase活性的下降(44) 3.4.4 利用活性標定探針 (activity based probe) 分析Gsp amidase的活性(45) Part V 氧化態glutathionylspermidine的還原機制 3.5 Glutathionylspermidine disulfide可能是透過glutathionylspermidine amidase及glutathione reductase協同的途徑進行回復(48) 第四章、討論與結論 4.1 thiol小分子還原方法的選擇(50) 4.2 Glutathionylspermidine amidase在大腸桿菌遭受過氧化氫處理時所可能扮演的角色(51) 4.3 Glutathonylspermidine synthetase/amidase在大腸桿菌中的調控(53) 第五章、未來展望 5.1 GspSA的調控方式(56) 5.2 利用活性標定探針 (activity based probe) 分析大腸桿菌中Gsp amidase的活性(56) 5.3 蛋白質的Gsp-modification(57) 第六章、圖表與說明(58) 第七章、參考文獻(94) | |
| dc.language.iso | zh-TW | |
| dc.subject | -精胺質 | zh_TW |
| dc.subject | 氧化還原 | zh_TW |
| dc.subject | 麩胱甘肽 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 麩胱甘肽 | zh_TW |
| dc.subject | glutathionylspermidine | en |
| dc.subject | redox | en |
| dc.subject | oxidative stress | en |
| dc.subject | glutathione | en |
| dc.title | 麩胱甘肽-精胺質水解酶在大腸桿菌氧化還原調控中所扮演的角色 | zh_TW |
| dc.title | The role of glutathionylspermidine amidase in redox regulation of Escherichia coli | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳蕙芬,陳佩燁,羅禮強 | |
| dc.subject.keyword | 麩胱甘肽,-精胺質,麩胱甘肽,氧化壓力,氧化還原, | zh_TW |
| dc.subject.keyword | glutathionylspermidine,glutathione,oxidative stress,redox, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
