Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉
dc.contributor.authorSzu-Ying Chenen
dc.contributor.author陳思穎zh_TW
dc.date.accessioned2021-06-15T01:30:31Z-
dc.date.available2009-08-01
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-21
dc.identifier.citationAddiscott, T. M., Whitmore, A. P., and Powlson, D. S., 1991, “Farming fertilizers and the nitrate problem,” C. A. B. International Wallingford UK.
Alowitz, M. J. and Scherer, M. M., “Kinetic of nitrate, nitrite and Cr(VI) reduction by iron metal,” Environmental Science and Technology, 2002, 36, 299.
Chao, W. K., Pai, Y. H., Shieu, F. S., and Zen, J. M., “Preparation and characteristic investigation of hydrophilic Pt/γ-Al2O3/C,” Journal of Materials Science and Engineering, 2006, 38, 195–200.
Chen, Y. X., Zhang, Y., and Chen, G. H., “Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater,” Water Research, 2003, 37, 2489–2495.
Cheng, I. F., Muftikian, R., Fernando, Q., and Korte, N., “Reduction of nitrate to ammonia by zero-valent iron,” Chemosphere, 1997, 35, 2689–2695.
Corma, A., Serna, P., Concepcion, P., and Calvino, J. J., “Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics,” Journal of the American Chemical Society, 2008, 130, 8748–8753.
Crittenden, J. C., Liu, J., Hand, D. W., and Perram, D. L., “Photocatalytic oxidation of chlorinated hydrocarbons in water,” Water Research, 1997, 31, 429–438.
Epron, F., Gauthard, F., Pineda, C., and Barbier, J., ”Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in aqueous solution: Role of the interaction between copper and platinum in the reaction,” Journal of Catalysis, 2001, 198, 309–318.
Foster, N. S., Noble, R. D., and Kovel, C. A., ”Reversible photoreductive deposition and oxidative dissolution of copper ions in titanium dioxide aqueous suspensions,” Environmental Science and Technology, 1993, 27, 350–356.
Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 1972, 238, 37.
Gao, L. J., Li, R. F., and Tian, Y. H., “Homodinuclear metal complexes encapsulated in SBA-15 molecular sieve as catalyst,” Petrochemical Technology, 2006, 11, 1038–1043.
Gao, W. L., Guan, N. J., Chen, J. X., Guan, X. X., Jin, R. C., Zeng, H. S., Liu, Z. G., and Zhang, F. X., “Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water,” Applied Catalysis B: Environmental, 2003, 46, 341–351.
Gao, W. L., Jin, R. C., Chen, J. X., Guan, X. X., Zeng, H. S., Zhang, F. X., and Guan, N. J., ”Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate,” Catalysis Today, 2004, 90, 331–336.
Gašparovičova, D., Kŕalik, M., Hronec, M., Biffis, A., Zecca, M., and Corain, B., “Reduction of nitrates dissolved in water over palladium-copper catalysts supported on a strong cationic resin,” Journal of Molecular Catalysis A: Chemical, 2006, 244, 258–266 .
Haddad, P. R., “Ion chromatography,” Analytical and Bioanalytical Chemistry, 2004, 379, 341–343.
Hadjiivanov, K. I., 'Identification of neutral and charged N<x>O<y> surface species by IR spectroscopy,' Catal. Rev.-Sci. Eng., 2000, 42(1&2), 71–144.
Hoffmann, M. R., Martin, S. T., Choi, W. Y., and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, 1995, 95, 69–96.
Hőrold, S., Vorlop, K. D., Tacke, T., and Sell, M., “Development of catalysts for a selective nitrate and nitrite removal from drinking water,” Catalysis Today, 1993, 17, 21–30.
Kapoor, A. and Viraraghavan, T., Fellow, ASCE, “Nitrate Removal from Drinking Water – Review,” Journal of Environmental Engineering, 1997, 123, 371–380.
Kormann, C., Bahnemann, D. W., and Hoffmann, M. R., “Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions,” Environmental Science and Technology, 1991, 25, 494–500.
Kumazawa, K., “Nitrogen fertilization and nitrate pollution in groundwater in Japan: Present status and measures for sustainable agriculture,” Nutrient Cycling in Agroecosystems, 2002, 63, 129–137.
Lecloux, A. J., “Chemical, biological and physical constrains in catalytic reduction processes for purification of drinking water,” Catalysis Today, 1999, 53, 23–34.
Li, D. Y., Yang, H., Xie, T. T., Gao, X. Z., and Lian, J. S., “The heat treatment process of hydrous alumina and characteristics of nanometer Al2O3,” Chinese Journal of Inorganic Chemistry, 2006, 22, 96–100.
Linsebigler, A. L., Lu, G., Yates, J. T., and Jr., “Photocatalysis on TiO2 Surface: Principles, Mechanisms, and Selected Results,” Chemical Reviews, 1995, 95, 735–758.
Liou, Y. H., Lin, C. J., Weng, S. C., Ou, H. H., and Lo, S. L., ”Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals,” Environmental Science and Technology, 2009, 43, 2482–2488.
Liu, J. J., He, D. P., Cai, D. C., Lin, F. R., and Yu, X. P., “Crystal phase transfer and photocatalytic activity of P-25 TiO2,” Chemical Industry and Engineering, 2006, 23(2), 106–109.
Murphy, A. P., “Chemical removal of nitrate from water,” Nature, 1991, 350, 223–225.
Pintar, A. and Batista, J., “Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors,” Catalysis Today, 1999, 53, 35–50.
Prusse, U., Hahnlein, M., Daum, J., and Vorlop, K. D., “Improving the catalytic nitrate reduction,” Catalysis Today, 2000, 55, 79–90.
Prusse, U. and Vorlop, K. D., “Supported bimetallic palladium catalysts for water-phase nitrate reduction,” Journal of Molecular Catalysis A: Chemical, 2001, 173, 313–328.
Ranjit, K. T. and Viswanathan, B., “Photocatalytic reduction of nitrite and nitrate ions to ammonia on M/TiO2 catlysts,” Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 73–78.
Reiche, H., Dunn, W. W., Bard, A. J., “Heterogeneous photocatalytic and photosynthetic deposition of copper on TiO2 and WO3 powders,” The Journal of Physical Chemistry, 1979, 83, 2248–2251.
Sa, J. and Anderson, J. A., “FTIR study of aqueous nitrate reduction over Pd/TiO2,” Applied Catalysis B: Environmental, 2008, 77, 409–417.
Singleton, P. and Sainsbury, D., 1988, “Dictionary of Microbiology and Molecular Biology, 2th,” John Wiley and Sons.
Streethawong, T. and Yoshikawa, S., “Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts,” Catalysis Communications, 2005, 6, 661–668.
Varghese, O. K., Gong, D., Paulose, M., Grimes, C. A., and Dickey, E. C., ”Crystallization and high-temperature structural stability of titanium oxide nanotube arrays,” Journal of Materials Research, 2003, 18, 156–165.
Yang, G. C. and Lee, H. L., “Chemical reduction of nitrate by nanosized iron: kinetics and pathways,” Water Research, 2005, 38, 884–894.
Zhang, F., Pi, Y., Cui, J., Zhang, X., and Guan, N., “Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide,” The Journal of Physical Chemistry, 2007, 111, 3756–3761.
Zhang, W. L., Tian, Z. X., Zhang, N., and Li, X. Q., “Nitrate pollution groundwater in northern China,” Agriculture Ecosystems and Environment, 1996, 59, 223–231.
Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., and Stucky, G. D., “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science, 1998, 279, 548–552.
劉雅瑄,「零價鐵表面改質對水中硝酸鹽還原脫硝反應之影響」,博士論文,國立台灣大學環境工程研究所,2006
謝明宏,「二氧化鈦修飾中孔洞分子篩之合成、結構特性與光催化反應」,碩士論文,國立中央大學化學學系,2009
曾文裕,「催化性雙金屬還原水中硝酸鹽之研究」,碩士論文,國立台灣大學環境工程研究所,2006
曾雨凡,「選擇性光催化還原水中硝酸鹽為氮氣之研究」,碩士論文,國立台灣大學環境工程研究所,2007
翁士奇,「奈米級零價鐵及銅鐵雙金屬還原水中硝酸鹽之研究」,碩士論文,國立台灣大學環境工程研究所,2006
行政院環境保護署,「95年環境水質監測年報-地下水水質篇」,2008。
行政院經濟部水利署,「水文水資源資料管理供應系統」,http://gweb.wra.gov.tw/wrweb/。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42960-
dc.description.abstract利用催化材料對硝酸鹽進行催化加氫降解實驗,已被證實是一可行之處理方式,具有效率高與經濟性等優點。本篇論文之研究重點在於利用不同之材料製備方法及催化加氫系統下降解硝酸鹽,以達到最大的氮氣選擇性。本篇研究選擇三種材料製備方法-光沉積法、熱浸漬法、無電電鍍法-來製備Pd-Cu/TiO2催化材料,並選擇商用Degussa P25二氧化鈦粉末為負載金屬之載體,實驗結果顯示,以光沉積法製備之催化材料具有最均勻的金屬批覆性及最小的金屬顆粒,對於降解硝酸鹽更具有最佳的氮氣選擇性,因此選擇光沉積法為後續實驗中的材料製備方法。為了瞭解催化材料的表面特性及物化特性,本實驗以穿透式電子顯微鏡觀察催化材料表面金屬負載情形,以BET比表面積測定儀測定催化材料之比表面積,以程式升溫還原儀測試表面金屬還原情形,並以傅立葉氏轉換紅外線光譜儀探討反應過程中可能鍵結之汙染物及其中間產物組成,以及利用感應耦合電漿原子發射光譜儀量測金屬之實際負載量。
批次實驗結果顯示,在適當之操作條件下,催化加氫降解硝酸鹽之反應有最佳之氮氣選擇性,同時可將40 mg-N/L之硝酸鹽完全降解,其條件為:(1)以Pd-Cu/TiO2雙金屬負載二氧化鈦為催化材料,其Pd:Cu負載比例為1:1且總金屬批覆量為3 wt.%,並且設定鍛燒溫度200 ℃並通以氫氮混和氣體還原金屬,(2)設定氫氣流量為100 mL/min,(3)控制系統pH值為7。
zh_TW
dc.description.abstractThe catalytic hydrogenation technology applied in the removal of nitrate in water has been proved to be an effective and economical treatment process. Therefore, in this study, the main purpose is to enhance the nitrogen selectivity of nitrate degradation using catalytic hydrogenation method with different prepared catalysts. Three different catalyst preparation method, photodeposition method, thermal impregnation method, and electroless plating method, were employed to the nitrate degradation. The catalyst prepared by photodeposition exhibits the most uniform metal distribution and the highest selectivity of nitrogen. Therefore, titanium (P25) supported palladium-copper bimetallic catalysts (Pd-Cu/TiO2) prepared by photodeposition are applied to the catalytic hydrogenation of nitrate (NO3-) in the liquid phase. The morphologies and the characterization of the prepared catalysts were examined with transmission electron microscopy (TEM), surface area analysis (BET), temperature programming reduction (TPR), and Fourier transform infrared spectrophotometer (FTIR).
The optimum operating values of Pd:Cu ratio, total metal content, calcined temperature, hydrogen flow rate, and pH value for maximizing the nitrogen selectivity of catalytic hydrogenation have been determined to be 1:1, 3 wt.%, 200 ℃, 100 ml/min, and 7.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:30:31Z (GMT). No. of bitstreams: 1
ntu-98-R96541121-1.pdf: 3381699 bytes, checksum: c4513ffa7605d4879e5b14dda085be83 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 III
Abstract IV
目錄 V
圖目錄 VIII
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的與內容 3
第二章 文獻回顧 4
2-1 硝酸鹽之汙染源與危害 4
2-1-1 硝酸鹽之物化特性與其分佈範圍 4
2-1-2 硝酸鹽之危害 7
2-1-3 我國地下水水質標準 9
2-2 現行脫硝技術之回顧 9
2-2-1 生物脫硝技術 9
2-2-2 物化脫硝技術 11
2-3 催化加氫還原硝酸鹽處理技術之探討 14
2-3-1 催化加氫還原硝酸鹽處理技術原理 14
2-3-2 催化加氫還原硝酸鹽處理技術之參數變因 16
2-3-3 反應材料製備方法 22
2-3-4 氮氣選擇率及反應活性之探討 25
第三章 實驗方法及設備 27
3-1 實驗設計 27
3-2 催化材料之製備 27
3-2-1 光沉積法 27
3-2-2 熱浸漬法 30
3-2-3 無電電鍍法 30
3-3 批次實驗 31
3-3-1 催化材料製備方式動力試驗 31
3-3-2 金屬種類負載動力試驗 31
3-3-3 Pd-Cu/TiO2金屬負載比例動力試驗 31
3-3-4 Pd-Cu/TiO2總金屬負載量動力試驗 32
3-3-5 催化材料鍛燒溫度動力試驗 32
3-3-6 氫氣流量動力試驗 32
3-3-7 反應系統pH值動力試驗 33
3-3-8 亞硝酸鹽降解動力試驗 33
3-4 汙染物與產物定量分析 34
3-4-1 離子層析儀 34
3-4-2 氨電極 35
3-5 催化材料物化性分析 37
3-5-1 場發射槍掃描式電子顯微鏡/X射線能量分散光譜儀 37
3-5-2 穿透式電子顯微鏡 38
3-5-3 程式升溫還原儀 39
3-5-4 BET比表面積測定儀 39
3-5-5 傅立葉氏轉換紅外線光譜儀 40
3-5-6 感應耦合電漿原子發射光譜儀 41
第四章 結果與討論 43
4-1 材料製備方法的選擇 43
4-1-1 表面特性分析 43
4-1-2 動力實驗 51
4-2 催化材料之選擇與製備條件 53
4-2-1 批覆金屬之選擇 53
4-2-2 金屬負載比例 56
4-2-3 總金屬批覆量 60
4-2-4 鍛燒溫度 62
4-3 反應操作條件動力實驗 65
4-3-1 氫氣流量 65
4-3-2 反應系統pH值 67
4-4 亞硝酸鹽降解之動力實驗 70
4-5 反應機制探討 75
4-5-1 空白實驗及背景實驗 75
4-5-2 傅立葉轉換紅外線光譜儀分析 79
4-5-3 反應機制 81
第五章 結論與建議 84
5-1 結論 84
5-2 建議 86
第六章 參考文獻 87
附錄 實驗數據 93
dc.language.isozh-TW
dc.subject硝酸鹽zh_TW
dc.subject催化加氫zh_TW
dc.subject二氧化鈦zh_TW
dc.subject光沉積法zh_TW
dc.subject複合金屬催化劑zh_TW
dc.subjectphotodepositionen
dc.subjectcatalytic hydrogenationen
dc.subjectbimetallic catalysten
dc.subjectnitrateen
dc.subjecttitaniaen
dc.title選擇性催化加氫技術還原水中硝酸鹽為氮氣之研究zh_TW
dc.titleSelective Catalytic Hydrogenation of Nitrate to Nitrogen on Pd-Cu/TiO2 Catalystsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee闕蓓德,官文惠
dc.subject.keyword催化加氫,硝酸鹽,二氧化鈦,光沉積法,複合金屬催化劑,zh_TW
dc.subject.keywordcatalytic hydrogenation,nitrate,titania,photodeposition,bimetallic catalyst,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2009-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved