Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42867
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李克強
dc.contributor.authorYi-Yin Chenen
dc.contributor.author陳怡吟zh_TW
dc.date.accessioned2021-06-15T01:26:43Z-
dc.date.available2009-07-28
dc.date.copyright2009-07-28
dc.date.issued2009
dc.date.submitted2009-07-22
dc.identifier.citation1. Masliyah, J., Electrokinetic Transport Phenomena. 1994: Alberta Oil Sands Technology and Research Authority.
2. Hunter, R., Foundations of Colloid Science. 1989: Clarendon Press.
3. Hunter, R., Zeta Potential in Colloid Science: principles and applications. 1981: Academic Press New York.
4. Van de Ven, T., Colloidal Hydrodynamics. 1989: Academic Press.
5. Russel, W., The Dynamics of Colloidal Systems. 1987: The University of Wisconsin Press.
6. Dukhin, S., A. Mistetsky, and B. Deriagin, Surface and Colloid Science. 1974: Wiley-Insterscience.
7. Smoluchowski, M., Handbuch der Elektrizitat und des Magnetismus. Band II, Barth-Verlag, Leipzig, 1921.
8. Huckel, E., The Electrophoresis of Spherical Colloid. Phys. Zeit, 1924. 25: p. 204-210.
9. Henry, D. The Cataphoresis of Suspended Particles. 1931.
10. Overbeek, J., Quantitative Interpretation of the Electrophoretic Velocity of Colloids. Advances in Colloid Science, 1950. 3: p. 97-134.
11. Booth, F., The Electroviscous Effect for Suspensions of Solid Spherical Particles. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 1950. 203(1075): p. 533-551.
12. Wiersema, P.H., Calculation of the Electrophoretic Mobility of a Spherical Colloid Particle. Journal of Colloid and Interface Science, 1966. 22: p. 78.
13. O'Brien, R.W., Electrophoretic Mobility of a Spherical Colloidal Particle. Faraday Transactions 2, 1978. 74: p. 1607.
14. Lee, E., Electrophoretic Mobility of a Sphere in a Spherical Cavity. Journal of Colloid and Interface Science, 1998. 205(1): p. 65.
15. Lee, E., Electrophoretic Mobility of a Concentrated Suspension of Spherical Particles. Journal of Colloid and Interface Science, 1999. 209(1): p. 240.
16. Lee, E., Electrophoresis of a Non-conducting Newtonian Drop of Low Electrical Potential Normal to a Plane. Chemical Engineering Science, 2006. 61(14): p. 4550.
17. Chiang, C., Electrophoresis of a Spherical Dispersion of Polyelectrolytes in a Salt-free Solution. Journal of Physical Chemistry, The, 2006. 110(3): p. 1490.
18. Hsu, J.P., Boundary Effect on Electrophoresis: finite cylinder in a cylindrical pore. Journal of Colloid and Interface Science, 2005. 283(2): p. 592.
19. Davison, S. and K. Sharp, Boundary Effects on the Electrophoretic Motion of Cylindrical Particles: Concentrically and Eccentrically-positioned Particles in a Capillary. Journal of Colloid and Interface Science, 2006. 303(1): p. 288-297.
20. Ye, C., Electrophoretic Motion of a Circular Cylindrical Particle in a Circular Cylindrical Microchannel. Langmuir, 2002. 18(23): p. 9095.
21. Hsu, J.P., Electrophoresis of a Spheroid in a Spherical Cavity. Langmuir, 2003. 19(19): p. 7469.
22. YOON, B. and S. KIM, Electrophoresis of Spheroidal Particles. Journal of Colloid and Interface Science, 1989. 128(1): p. 275-288.
23. Hsu, J.P., K. Chao-Chung, and K. Ming-Hong, Electrophoresis of a Charge-regulated Toroid Normal to a Large Disk. Electrophoresis, 2008. 29(2): p. 348-57.
24. Wolken, J.J., The Structure of the Chloroplast. Annual Review of Plant Physiology, 1959. 10(1): p. 71.
25. Sarvari, E. and P. Nyitrai, Separation of Chlorophyll-protein Complexes by Deriphat Polyacrylamide Gradient Gel Electrophoresis. Electrophoresis, 1994. 15(1).
26. Preiss, S., The Multiple Pigment-proteins of the Photosystem I Antenna*. Photochemistry and Photobiology, 1993. 57(1): p. 152.
27. Peter, G. and J. Thornber, Biochemical Evidence that the Higher Plant Photosystem II Core Complex is Organized as a Dimer. Plant and cell physiology, 1991. 32(8): p. 1237-1250.
28. Bassi, R., The Chlorophyll-a/b Proteins of Photosystem II in Chlamydomonas Reinhardtii. Planta, 1991. 183(3).
29. Allen, K.D., Resolution of 16 to 20 ChlorophyII-protein Complexes Using a Low lonic Strength Native Green Gel System. Analytical Biochemistry, 1991. 194(1): p. 214.
30. Delepelaire, P. and N. Chua, Electrophoretic Purification of Chlorophyll a/b-protein Complexes from Chlamydomonas Reinhardtii and Spinach and Analysis of their Polypeptide compositions. Journal of Biological Chemistry, 1981. 256(17): p. 9300-9307.
31. Campbell, M. and S. Farrell, Biochemistry. 1991: Saunders College Publishing Philadelphia.
32. Lewington, J. and M. Day, A Rapid Electrophoretic Method for the Measurement of Plasmid Copy Number. Letters in Applied Microbiology, 1986. 3(6): p. 109-112.
33. Anderson, D. and L. McKay, Simple and Rapid Method for Isolating Large Plasmid DNA from Lactic Streptococci. Applied and Environmental Microbiology, 1983. 46(3): p. 549-552.
34. Weisblum, B., M. Graham, T. Gryczan, and D. Dubnau, Plasmid Copy Number Control: Isolation and Characterization of High-copy-number Mutants of Plasmid pE194. Journal of Bacteriology, 1979. 137(1): p. 635-643.
35. Meyers, J., D. Sanchez, L. Elwell, and S. Falkow, Simple Agarose Gel Electrophoretic Method for the Identification and Characterization of Plasmid Deoxyribonucleic Acid. Journal of Bacteriology, 1976. 127(3): p. 1529-1537.
36. Projan, S., S. Carleton, and R. Novick, Determination of Plasmid Copy Number by Fluorescence Densitometry. Plasmid, 1983. 9(2): p. 182.
37. Fung, Y.C.B., Theory of the Sphering of Red Blood Cells. Biophysical Journal, 1968. 8(2): p. 175.
38. Phillips, D.R. and M. Morrison, Exposed Protein on the Intact Human Erythrocyte. Biochemistry, 1971. 10(10): p. 1766-71.
39. Murphy, J.R., Erythroctye Metabolism. VI. Cell Shape and the Location of Cholesterol in the Erythrocyte Membrane. Journal of Laboratory and Clinical Medicine, The, 1965. 65: p. 756-74.
40. Higgins, J.A., N.T. Florendo, and R.J. Barrnett, Localization of Cholesterol in Membranes of Erythrocyte Ghosts. Journal of Ultrastructure Research, 1973. 42(1): p. 66-81.
41. Canham, P.B., The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. Journal of Theoretical Biology, 1970. 26(1): p. 61-81.
42. Deuling, H.J. and W. Helfrich, Red Blood Cell Shapes as Explained on the Basis of Curvature Elasticity. Biophysical Journal, 1976. 16(8): p. 861-8.
43. Angelov, B. and I.M. Mladenov, On the Geometry of Red Blood Cell. Geometry, integrability and quantization. Varna: Bulgaria, 1999.
44. Ada, G.L., Effect of Hæmagglutinating Viruses on the Electrophoretic Mobility of Human Erythrocytes. Nature, 1950. 165(4188): p. 189.
45. Kitagawa, S., O. Nozaki, and T. Tsuda, Study of the Relationship between Electrophoretic Mobility of the Diabetic Red Blood Cell and Hemoglobin A1c by Using a Mini-cell Electrophoresis Apparatus. Electrophoresis, 1999. 20(12): p. 2560-5.
46. Lu, W.H., W.H. Deng, S.T. Liu, T.B. Chen, and P.F. Rao, Capillary Electrophoresis of Erythrocytes. Analytical Biochemistry, 2002. 314: p. 194-198.
47. San Martin, E., Modeling Normaland Altered Human Erythrocyte Shapesbya New Parametric Equation: Application tothe Calculationof Induced Transmembrane Potentials. Bioelectromagnetics, 2006. 27(7): p. 521.
48. Eremina, E., J. Hellmers, Y. Eremin, and T. Wriedt, Different shape models for erythrocyte: Light scattering analysis based on the discrete sources method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006. 102(1): p. 3-10.
49. Dibiasio, A., Effect of the Shape of Human Erythrocytes on the Evaluation of the Passive Electrical Properties of the Cell Membrane. Bioelectrochemistry, 2005. 65(2): p. 163.
50. Kuwabara, S., The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. Journal of the Physical Society of Japan, 1959. 14(4): p. 527.
51. Shilov, V., N. Zharkikh, and Y. Borkovskaya, Theory of non-equilibrium electrosurface phenomena in concentrated disperse systems. 1. Application of non-equilibrium thermodynamics to cell model of concentrated dispersions. Colloid J, 1981. 43(3): p. 434-438.
52. Canuto, C., M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics. 1988: Springer New York.
53. Happel, J. and H. Brenner, Low Reynolds Number Hydrodynamics: with special applications to particulate media. 1983: Kluwer Academic Print on Demand.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42867-
dc.description.abstract本研究探討各類盤狀膠體粒子在密集系統中的電泳行為,利用Cassini方程式中的形狀參數來描述球形粒子逐漸變形成圓盤狀,乃至雙凹圓盤狀的過程,並採用假性光譜法為數值方法,在弱外加電場下,將部分相互耦合的電場、流場及離子濃度場方程式線性化,再利用牛頓-拉福生疊代法求得系統之穩態解。
研究結果發現,隨著形狀參數增加,盤狀粒子電泳動度的球形比(λ)愈來愈小,表示形狀參數愈大,愈偏離球形的計算結果。此外,若固定表面電位,在低κa時,盤狀粒子會產生局部的電位梯度疏密不一,以雙凹圓盤狀為例,在粒子凹陷處的電位梯度較疏,代表此處的累積電荷較少,造成電力較弱。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T01:26:43Z (GMT). No. of bitstreams: 1
ntu-98-R96524042-1.pdf: 1103523 bytes, checksum: 5318e5d4dc19596e636c1a454c260e80 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖表目錄 VI
第一章 序論 1
第二章 理論分析 13
2.1 系統描述 13
2.2 主控方程式 17
2.3 平衡狀態 20
2.4 擾動狀態 22
2.5 系統變數之無因次化 28
2.6 無因次化之主控方程式與其邊界條件 30
2.7 電泳動度之計算 34
第三章 數值方法 36
3.1 正交配位法 37
3.2 空間映射 44
3.3 牛頓-拉福生疊代法 48
3.4 數值積分 52
第四章 結果與討論 54
4.1 形狀對電泳動度的影響 59
4.2 粒子形狀與電位分佈之影響 63
4.3 密集度之影響 67
4.4 固定表面電荷密度之討論 74
4.5 固定表面電荷密度與形狀之關係 78
第五章 結論 82
參考文獻 84
符號表 90
附錄A 微分運算子之推導 93
附錄B 表面邊界條件之推導 96
dc.language.isozh-TW
dc.subject形狀參數zh_TW
dc.subject電泳現象zh_TW
dc.subject盤狀zh_TW
dc.subject雙凹圓盤狀zh_TW
dc.subjectCassini方程式zh_TW
dc.subjectbiconcaveen
dc.subjectshape parameteren
dc.subjectCassini equationen
dc.subjectelectrophoresis behavioren
dc.subjectdisken
dc.title各種密集盤狀膠體粒子之電泳現象研究zh_TW
dc.titleElectrophoresis Behavior of the Various Disk Shape Colloids in a Concentrated Suspensionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏溪成,周正堂,吳嘉文
dc.subject.keyword電泳現象,盤狀,雙凹圓盤狀,Cassini方程式,形狀參數,zh_TW
dc.subject.keywordelectrophoresis behavior,disk,biconcave,Cassini equation,shape parameter,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2009-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
1.08 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved