請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42856完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 史有伶(Yu-Ling Shih) | |
| dc.contributor.author | Kuan-Yi Wu | en |
| dc.contributor.author | 巫冠毅 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:26:14Z | - |
| dc.date.available | 2012-07-24 | |
| dc.date.copyright | 2009-07-24 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-23 | |
| dc.identifier.citation | Adam, M., Fraipont, C., Rhazi, N., Nguyen-Disteche, M., Lakaye, B., Frere, J.M., Devreese, B., Van Beeumen, J., van Heijenoort, Y., van Heijenoort, J., et al. (1997). The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate. J Bacteriol 179, 6005-6009.
Anand, S.P., Akhtar, P., Tinsley, E., Watkins, S.C., and Khan, S.A. (2008). GTP-dependent polymerization of the tubulin-like RepX replication protein encoded by the pXO1 plasmid of Bacillus anthracis. Mol Microbiol 67, 881-890. Autret, S., and Errington, J. (2003). A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis. Mol Microbiol 47, 159-169. Autret, S., Nair, R., and Errington, J. (2001). Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol Microbiol 41, 743-755. Becker, E., Herrera, N.C., Gunderson, F.Q., Derman, A.I., Dance, A.L., Sims, J., Larsen, R.A., and Pogliano, J. (2006). DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J 25, 5919-5931. Ben-Yehuda, S., and Losick, R. (2002). Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257-266. Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147. Bi, E., and Lutkenhaus, J. (1991). FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161-164. Bouet, J.Y., and Funnell, B.E. (1999). P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J 18, 1415-1424. Bowman, G.R., Comolli, L.R., Zhu, J., Eckart, M., Koenig, M., Downing, K.H., Moerner, W.E., Earnest, T., and Shapiro, L. (2008). A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134, 945-955. Casadaban, M.J., and Cohen, S.N. (1980). Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138, 179-207. Castaing, J.P., Bouet, J.Y., and Lane, D. (2008). F plasmid partition depends on interaction of SopA with non-specific DNA. Mol Microbiol 70, 1000-1011. Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645. de Boer, P.A.J., Crossley, R.E., and Rothfield, L.I. (1989). A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56, 641-649. Easter, J., Jr., and Gober, J.W. (2002). ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell 10, 427-434. Ebersbach, G., Briegel, A., Jensen, G.J., and Jacobs-Wagner, C. (2008). A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 134, 956-968. Ebersbach, G., and Gerdes, K. (2001). The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc Natl Acad Sci USA 98, 15078-15083. Ebersbach, G., and Gerdes, K. (2004). Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol Microbiol 52, 385-398. Ebersbach, G., Ringgaard, S., Moller-Jensen, J., Wang, Q., Sherratt, D.J., and Gerdes, K. (2006). Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol Microbiol 61, 1428-1442. Erdmann, N., Petroff, T., and Funnell, B.E. (1999). Intracellular localization of P1 ParB protein depends on ParA and parS. Proc Natl Acad Sci U S A 96, 14905-14910. Errington, J., Murray, H., and Wu, L.J. (2005). Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos Trans R Soc Lond B Biol Sci 360, 497-505. Figge, R.M., Divakaruni, A.V., and Gober, J.W. (2004). MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51, 1321-1332. Fogel, M.A., and Waldor, M.K. (2006). A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20, 3269-3282. Fung, E., Bouet, J.Y., and Funnell, B.E. (2001). Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J 20, 4901-4911. Garner, E.C., Campbell, C.S., and Mullins, R.D. (2004). Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog. Science 306, 1021-1025. Garner, E.C., Campbell, C.S., Weibel, D.B., and Mullins, R.D. (2007). Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science 315, 1270-1274. Gerdes, K., and Molin, S. (1986). Partitioning of plasmid R1. Structural and functional analysis of the parA locus. J Mol Biol 190, 269-279. Gitai, Z., Dye, N.A., Reisenauer, A., Wachi, M., and Shapiro, L. (2005a). MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329-341. Gruber, S., and Errington, J. (2009). Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685-696. Hatano, T., Yamaichi, Y., and Niki, H. (2007). Oscillating focus of SopA associated with filamentous structure guides partitioning of F plasmid. Mol Microbiol 64, 1198-1213. Hayes, F., and Barilla, D. (2006). The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 4, 133-143. Hester, C.M., and Lutkenhaus, J. (2007). Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc Natl Acad Sci U S A 104, 20326-20331. Hiraga, S., Niki, H., Ogura, T., Ichinose, C., Mori, H., Ezaki, B., and Jaffe, A. (1989). Chromosome partitioning in Escherichia coli: Novel mutants producing anucleate cells. J Bacteriol 171, 1496-1505. Hoischen, C., Bolshoy, A., Gerdes, K., and Diekmann, S. (2004). Centromere parC of plasmid R1 is curved. Nucleic Acids Res 32, 5907-5915. Hopwood, D.A. (1999). Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145 ( Pt 9), 2183-2202. Jakimowicz, D., Mouz, S., Zakrzewska-Czerwinska, J., and Chater, K.F. (2006). Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor. J Bacteriol 188, 1710-1720. Jakimowicz, D., Zydek, P., Kois, A., Zakrzewska-Czerwinska, J., and Chater, K.F. (2007). Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. Mol Microbiol 65, 625-641. Jensen, R.B., and Gerdes, K. (1997). Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J Mol Biol 269, 505-513. Jensen, R.B., Lurz, R., and Gerdes, K. (1998). Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid R1. Proc Natl Acad Sci U S A 95, 8550-8555. Jones, L., Carballido-Lopez, R., and Errington, J. (2001). Control of cell shape in bacteria: helical actin-like filaments in Bacillus subtilis. Cell 104, 913-922. Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95, 5752-5756. Karimova, G., Ullmann, A., and Ladant, D. (2000). A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. Methods Enzymol 328, 59-73. Kim, H.J., Calcutt, M.J., Schmidt, F.J., and Chater, K.F. (2000). Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol 182, 1313-1320. Kois, A., Swiatek, M., Jakimowicz, D., and Zakrzewska-Czerwinska, J. (2009). SMC protein-dependent chromosome condensation during aerial hyphal development in Streptomyces. J Bacteriol 191, 310-319. Kruse, T., Bork-Jensen, J., and Gerdes, K. (2005). The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol 55, 78-89. Kruse, T., and Gerdes, K. (2005). Bacterial DNA segregation by the actin-like MreB protein. Trends Cell Biol 15, 343-345. Ladant, D., and Karimova, G. (2000). Genetic systems for analyzing protein-protein interactions in bacteria. Res Microbiol 151, 711-720. Larsen, R.A., Cusumano, C., Fujioka, A., Lim-Fong, G., Patterson, P., and Pogliano, J. (2007). Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev 21, 1340-1352. Lemonnier, M., Bouet, J.Y., Libante, V., and Lane, D. (2000). Disruption of the F plasmid partition complex in vivo by partition protein SopA. Mol Microbiol 38, 493-505. Leonard, T.A., Butler, P.J., and Lowe, J. (2005). Bacterial chromosome segregation: structure and DNA binding of the Soj dimer - a conserved biological switch. EMBO J 24, 270-282. Li, Y., Dabrazhynetskaya, A., Youngren, B., and Austin, S. (2004). The role of Par proteins in the active segregation of the P1 plasmid. Mol Microbiol 53, 93-102. Libante, V., Thion, L., and Lane, D. (2001). Role of the ATP-binding site of SopA protein in partition of the F plasmid. J Mol Biol 314, 387-399. Lin, Y.S., Kieser, H.M., Hopwood, D.A., and Chen, C.W. (1993). The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10, 923-933. Møller-Jensen, J., Borch, J., Dam, M., Jensen, R.B., Roepstorff, P., and Gerdes, K. (2003). Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol Cell 12, 1477-1487. Møller-Jensen, J., Jensen, R.B., Lachner, L., Löwe, J., and Gerdes, K. (2002). Prokaryotic DNA segregation by an actin-like filament. EMBO J 21, 3119-3127. Makarova, O., Kamberov, E., and Margolis, B. (2000). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972. Marston, A.L., and Errington, J. (1999). Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 4, 673-682. Mohl, D.A., Easter, J., Jr., and Gober, J.W. (2001). The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42, 741-755. Murray, H., and Errington, J. (2008). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74-84. Murray, H., Ferreira, H., and Errington, J. (2006). The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol Microbiol 61, 1352-1361. Niki, H., Ichinose, C., Ogura, T., Mori, H., Morita, M., Hasegawa, M., Kusukawa, N., and Hiraga, S. (1988). Chromosomal genes essential for stable maintenance of the mini-F plasmid in Escherichia coli. J Bacteriol 170, 5272-5278. Ogura, T., and Hiraga, S. (1983). Mini-F plasmid genes that couple cell division to plasmid proliferation. ProcNatlAcadSci USA 80, 4784-4788. Pardee, A.B., Jacob, F., and Monod, J. (1959). The genetic control and cytoplasmic expression of 'inducibility' in the synthesis of b-galactosidase by E. coli. J Mol Biol 1, 165-178. Pogliano, J., Ho, T.Q., Zhong, Z., and Helinski, D.R. (2001). Multicopy plasmids are clustered and localized in Escherichia coli. Proc Natl Acad Sci U S A 98, 4486-4491. Quisel, J.D., and Grossman, A.D. (2000). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182, 3446-3451. Quisel, J.D., Lin, D.C., and Grossman, A.D. (1999). Control of development by altered localization of a transcription factor in B. subtilis. Mol Cell 4, 665-672. Raskin, D., and de Boer, P. (1999). Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96, 4971-4976. Rowland, S.L., Fu, X., Sayed, M.A., Zhang, Y., Cook, W.R., and Rothfield, L.I. (2000). Membrane redistribution of the Escherichia coli MinD protein induced by MinE. J Bacteriol 182, 613-619. Salje, J., Zuber, B., and Lowe, J. (2009). Electron Cryomicroscopy of E. coli Reveals Filament Bundles Involved in Plasmid DNA Segregation. Science 323, 509-512. Sambrook, J., and Russell, D.W. (2001). Molecular cloning : a laboratory manual, 3rd edn (Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press). Shih, Y.L., Kawagishi, I., and Rothfield, L. (2005). The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58, 917-928. Shih, Y.L., Le, T., and Rothfield, L. (2003). Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A 100, 7865-7870. Sullivan, N.L., Marquis, K.A., and Rudner, D.Z. (2009). Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137, 697-707. Thanbichler, M., and Shapiro, L. (2006). MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126, 147-162. Tsien, R.Y. (1998). The green fluorescent protein. Annu Rev Biochem 67, 509-544. Weitao, T., Dasgupta, S., and Nordstrom, K. (2000). Plasmid R1 is present as clusters in the cells of Escherichia coli. Plasmid 43, 200-204. Wu, L.J., and Errington, J. (2003). RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol 49, 1463-1475. Yamaichi, Y., Fogel, M.A., McLeod, S.M., Hui, M.P., and Waldor, M.K. (2007a). Distinct centromere-like parS sites on the two chromosomes of Vibrio spp. J Bacteriol 189, 5314-5324. Yamaichi, Y., Fogel, M.A., and Waldor, M.K. (2007b). par genes and the pathology of chromosome loss in Vibrio cholerae. Proc Natl Acad Sci U S A 104, 630-635. Yamaichi, Y., and Niki, H. (2000). Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci USA 97, 14656-14661. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42856 | - |
| dc.description.abstract | The Par system為細菌體內參與將複製後的遺傳物質平均分配到子細胞中的一種機制。第一型Par system是由兩個蛋白質(ParA 與 ParB),及類似著絲點的核甘酸序列parS所組成。ParA蛋白屬於the Walker type ATPase中的MinD/ParA蛋白質家族中的一員。此類蛋白質大多能藉蛋白質間的聚合與解離而在細菌內進行反覆的動態運動,以提供物理力量支援相關細胞功能;因而被認為擁有細胞骨架蛋白的基本特性。本研究之主要目的為利用鏈黴菌(S. coelicolor A3(2))在產孢過程中的染色體分配機制為研究對象,探討其ParA相似蛋白ParA1如何利用其動態細胞骨架特性,幫助細菌內染色體的分配。首先,我們將帶有黃色螢光蛋白標記的ParA1融合蛋白於大腸桿菌中表現,並在螢光顯微鏡下,觀察此融合蛋白在細菌內的動態運動現象與分佈狀態。在大腸桿菌內缺少ParB的狀態下,我們發現Yfp-ParA1融合蛋白分佈在大腸桿菌類核體(nucleoid)的位置,並觀察到Yfp-ParA1融合蛋白在類核體上能進行不規則的動態分佈。當ParA1胺端區域的第1-32個胺基酸被移除後,Yfp-ParA133-308融合蛋白的分佈狀況及動態運動散佈於細胞質內發生,而不再侷限在類核體上。我們也發現,不論是否有完整的胺端區域,ParA1融合蛋白都能於大腸桿菌中形成螺旋狀纖維構造;且此螺旋狀構造的出現與大腸桿菌中內生的細胞骨架系統the Min system與肌動蛋白類蛋白MreB均無相關性。這些結果支持ParA1的動態特質可單純透過ParA1本身產生。
我們進一步根據已知的ParA相似蛋白結構,進行一系列的點突變實驗來尋找ParA1不同功能性區域與其定位於類核體之間的關係。結果顯示,ParA1完整的ATP結合區域,為附著在細菌的類核體所需。突變胺端胺基酸Arg31,也會影響ParA1和類核體的結合。羧基端則有兩個胺基酸R218與R247參與類核體的附著。另一方面,我們也利用細菌雙雜交系統測試點突變後的ParA1與ParA1及其與ParB產生交互作用的能力,發現ParA1之間的交互作用需要正常的ATP結合區域參與;而在破壞ParA1中預測為與水解ATP相關的Asp68後,其與ParB的交互作用則更 加穩定。因此,ParA1內不同的功能性區域應以ATP結合區域為中心,藉著各類區域的特性使ParA1具有不同的功能。在將miniF上的質體分配系統置換成鏈黴菌的Par system後,發現鏈黴菌染色體的分配系統能將miniF穩定的分配到子細胞中,也直接證明了鏈黴菌的Par system是有主動分配遺傳物質的能力。 綜合以上結果,我們發現鏈黴菌ParA1蛋白的細胞骨架性質是建立在三個功能性區域的基礎上,不同功能性區域間會互相影響,形塑ParA1獨特的運動性質與在細菌內的分佈。而ATP的結合區域可能扮演調節ParA1與類核體或與ParB間交互作用的角色。這些特性推測與鏈黴菌產孢過程中的染色體分配機制有重要的關係。 | zh_TW |
| dc.description.abstract | Chromosome segregation during sporulation in Streptomyces coelicolor A(3)2 is mediated by the Par system. The Par system is consisted of two protein components, ParA1 and ParB, and a centromere-like site, parS. ParA1 belongs to the MinD/ParA subgroup of the Walker-type ATPase family that is characterized by its cytoskeleton properties. Our goal is to gain better understanding on how the Par system may couple its dynamic cytoskeleton property to chromosome segregation. We show here that when expressed in Escherichia coli cells, Yfp tagged ParA1 in the absence of ParB was capable of associating with nucleoids and underwent stochastic movement over the nucleoids. On the other hand, the N-terminal truncated ParA1 preserved its ability to undergo stochastic movement though no longer associated with nucleoids. Both the full-length and N-terminal truncated ParA1 proteins were capable of forming long-range helical cables in E. coli that was independent of actin-like MreB and the Min system. Thus the dynamic movement of ParA1 is independent of ParB and can be separated from nucleoid association. Furthermore, ParA1’s ability to associate with nucleoids was impaired when mutations (R31E, K39E, G40V, K44E, D154A) were introduced into the ATP-binding pocket, suggesting that ATP binding to ParA1 is required for association with nucleoids. Using bacterial two-hybrid assays, ParA1-ParB interaction was enhanced when ParA1 harbored a mutation in Asp68, a residue that is predicted to be involved in ATP hydrolysis. This result indicates that ATP-bound ParA1 may stabilize its interaction with ParB. We also substitute the miniF Par system, SopABC, with Scoe Par system and found that Scoe Par system play active roles in plasmid DNA partition. In summary, we have characterized the functional domains of ParA1 of S. coelicolor A(3)2 that are fundamental for its cytoskeleton properties: (1) the N-terminal domain together with the ATP-binding pocket are responsible for targeting ParA1 to the bacterial nucleoids; (2) the ATP-bound ParA1 is likely to confer the ParB-binding conformation, and (3) the N-terminal domain of ParA1 is not required to deliver the dynamic properties of the protein. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:26:14Z (GMT). No. of bitstreams: 1 ntu-98-R96B46021-1.pdf: 3539261 bytes, checksum: c506cd0c07a2b87b96f1722a18595724 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 3 Table of contents 5 List of Tables 7 List of Figures 8 Introduction 9 Part I: Overview of the Par systems 10 General facts and classification of the Par systems 10 Case studies of the different Par systems 14 Mechanisms of plasmid and chromosome partition involving the Par systems 18 Life cycle of S. coelicolor 19 The chromosomal Par systems of S. coelicolor 20 Research aims 22 Materials and Methods 23 Strains 24 Cloning 24 Plasmids 24 Competent cell preparation and transformation 29 Site-directed mutagenesis 29 Fluorescence microscopy 30 Plasmid stability test 32 Bacterial two-hybrid assays 33 Results 36 ParA1Scoe targets to E. coli nucleoids and forms filamentous structures 37 Filament formation of ParA1Scoe is independent of the Min system and the actin-like MreB in E. coli 38 The N-terminal domain of ParA1Scoe is required for nucleoid targeting but not for its dynamic movement in E. coli 40 ParB localizes into discrete foci in E. coli 41 ParB and parS are both required for localizing ParA1Scoe into discrete foci 42 The Par system of S. coelicolor rescues the plasmid stability 44 Bioinformatic analysis of the ParA family proteins 46 Localization of ParA1Scoe carrying mutations in different functional domains 49 Intermolecular interaction between ParA1Scoe and ParA1Scoe 51 Intermolecular interaction between ParA1Scoe and ParB 53 Conclusions 56 Future works 60 Tables 63 Figures 72 References 102 Appendices 114 | |
| dc.language.iso | en | |
| dc.subject | Walker型ATP水解酶 | zh_TW |
| dc.subject | the Par system | zh_TW |
| dc.subject | 鏈黴菌 | zh_TW |
| dc.subject | 細胞骨架 | zh_TW |
| dc.subject | chromosome segregation | en |
| dc.subject | Walker type ATPase | en |
| dc.subject | cytoskeleton | en |
| dc.subject | parS | en |
| dc.subject | ParB | en |
| dc.subject | ParA | en |
| dc.subject | the Par system | en |
| dc.title | 鏈黴菌中ParA1蛋白參與染色體分配的
相關功能性區域之探討 | zh_TW |
| dc.title | Mapping functional domains responsible for
DNA association and dynamic movement in ParA1 of Streptomyces coelicolor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張邦彥(Ban-Yang Chang),陳文盛(Carton W Chen),王廷方(Ting-Fang Wang) | |
| dc.subject.keyword | the Par system,鏈黴菌,細胞骨架,Walker型ATP水解酶, | zh_TW |
| dc.subject.keyword | chromosome segregation,the Par system,ParA,ParB,parS,cytoskeleton,Walker type ATPase, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
