Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42821
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀文(Yao-Wen Chang)
dc.contributor.authorSzu-Yu Chenen
dc.contributor.author陳思佑zh_TW
dc.date.accessioned2021-06-15T01:24:45Z-
dc.date.available2014-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citation[1] International technology roadmap for semiconductors. http://www.itrs.
net/.
[2] IWLS 2005 benchmarks. http://www.iwls.org/iwls2005/benchmarks.
html.
[3] G. E. Bailey, A. Tritchkov, J.-W. Park, L. Hong, V. Wiaux, E. Hendrickx,
S. Verhaegen, P. Xie, and J. Versluijs. Double pattern EDA solutions for 32nm
HP and beyond. In Proceedings of SPIE Conference on Design for Manufac-
turability through Design-Process Integration, volume 6521, page 65211K, San
Jose, CA, February 2007.
[4] P. Berman, A. B. Kahng, D. Vidhani, H. Wang, and A. Zelikovsky. Optimal
phase conflict removal for layout of dark field alternating phase shifting masks.
In Proceedings of ACM International Symposium on Physical Design, pages
121{126, Monterey, CA, April 1999.
[5] C. Chiang, A. B. Kahng, S. Sinha, X. Xu, and A. Z. Zelikovsky. Fast and effi-
cient bright-field AAPSM con
ict detection and correction. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 26(1):115{126,
January 2007.
[6] T.-B. Chiou, R. Socha, H. Chen, L. Chen, S. Hsu, P. Nikolsky, A. van Oosten,
and A. C. Chen. Development of layout split algorithms and printability eval-
uation for double patterning technology. In Proceedings of SPIE Conference
on Optical Microlithography XXI, volume 6924, page 69243M, San Jose, CA,
March 2008.
[7] M. Cho, Y. Ban, and D. Z. Pan. Double patterning technology friendly detailed
routing. In Proceedings of IEEE/ACM International Conference on Computer-
Aided Design, pages 506{511, San Jose, CA, November 2008.
[8] C. Cork, B. Ward, L. Barnes, B. Painter, K. Lucas, G. Luk-Pat, V. Wiaux,
S. Verhaegen, and M. Maenhoudt. Checking design conformance and opti-
mizing manufacturability using automated double patterning decomposition.
In Proceedings of SPIE Conference on Design for Manufacturability through
Design-Process Integration II, volume 6925, page 69251Q, San Jose, CA, March
2008.
[9] E. T. Dixon and S. E. Goodman. An algorithm for the longest cycle problem.
Networks, 6(2):139{149, 1976.
[10] J. Doenhardt and T. Lengauer. Algorithmic aspects of one-dimensional lay-
out compaction. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 6(5):863{878, September 1987.
[11] M. Drapeau, V. Wiaux, E. Hendrickx, S. Verhaegen, and T. Machida. Dou-
ble patterning design split implementation and validation for the 32nm node.
In Proceedings of SPIE Conference on Design for Manufacturability through
Design-Process Integration, volume 6521, page 652109, San Jose, CA, March
2007.
[12] S. H. Gerez. Algorithms for VLSI Design Automation. John Wiley & Sons,
1999.
[13] H. Ha ner, J. Meiring, Z. Baum, and S. Halle. Paving the way to a full chip
gate level double patterning application. In Proceedings of SPIE Conference on
Photomask Technology, volume 6730, page 67302C, Monterey, CA, September
2007.
[14] A. Hand. ITRS lithography update weeds out 45 nm options. Semiconductor
International, December 2007.
[15] J. Huckabay, W. Staud, R. Naber, A. van Oosten, P. Nikolski, S. Hsu, R. J.
Socha, M. V. Dusa, and D. Flagello. Process results using automatic pitch
decomposition and double patterning technology (DPT) at k1e < 0.20. In
Proceedings of SPIE Conference on Photomask Technology, volume 6349, page
634910, Monterey, CA, October 2006.
[16] A. B. Kahng. Key directions and a roadmap for electrical design for manufac-
turability. In Proceedings of European Solid State Device Research Conference,
pages 83{88, September 2007.
[17] A. B. Kahng. How to get real mad. In Proceedings of ACM International
Symposium on Physical Design, pages 69{69, Portland, Oregon, April 2008.
[18] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao. Layout decomposition for double
patterning lithography. In Proceedings of IEEE/ACM International Conference
on Computer-Aided Design, pages 465{472, San Jose, CA, November 2008.
[19] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao. Revisiting the layout decom-
position problem for double patterning lithography. In Proceedings of SPIE
Conference on Photomask Technology, volume 7122, page 71220N, Monterey,
CA, October 2008.
[20] A. B. Kahng, S. Vaya, and A. Zelikovsky. New graph bipartizations for double-
exposure, bright eld alternating phase-shift mask layout. In Proceedings of
IEEE/ACM Asia South Paci c Design Automation Conference, pages 133{138,
Yokohama, Japan, January 2001.
[21] B. J. Lin. Immersion lithography and its impact on semiconductor manu-
facturing. Journal of Microlithography, Microfabrication, and Microsystems,
3(3):377{395, July 2004.
[22] Y. Pan, H. Zhang, and Y. Chen. A new OPC method for double patterning
technology. In Proceedings of SPIE Conference on Optical Microlithography
XXI, volume 6924, page 692422, San Jose, CA, March 2008.
[23] J. Park, S. Hsu, D. V. D. Broeke, J. F. Chen, M. Dusa, R. Socha, J. Finders,
B. Vleeming, A. van Oosten, P. Nikolsky, V. Wiaux, E. Hendrickx, J. Bekaert,
and G. Vandenberghe. Application challenges with double patterning technol-
ogy (DPT) beyond 45 nm. In Proceedings of SPIE Conference on Photomask
Technology, volume 6349, page 634922, Monterey, CA, September 2006.
[24] A. Sezginer and B. Yenikaya. Double patterning technology: process-window
analysis in a many-dimensional space. In Proceedings of SPIE Conference on
Design for Manufacturability through Design-Process Integration, volume 6521,
page 652113, San Jose, CA, March 2007.
[25] A. van Oosten, P. Nikolsky, J. Huckabay, R. Goossens, and R. Naber. Pattern
split rules! A feasibility study of rule based pitch decomposition for double pat-
terning. In Proceedings of SPIE Conference on Photomask Technology, volume
6730, page 67301L, Monterey, CA, October 2007.
[26] V. Wiaux, S. Verhaegen, S. Cheng, F. Iwamoto, P. Jaenen, M. Maenhoudt,
T. Matsuda, S. Postnikov, and G. Vandenberghe. Split and design guidelines for
double patterning. In Proceedings of SPIE Conference on Optical Microlithog-
raphy XXI, volume 6924, page 692409, San Jose, CA, March 2008.
[27] A. K.-K. Wong. Resolution enhancement techniques in optical lithography.
SPIE Publications, 2001.
[28] J.-S. Yang and D. Z. Pan. Overlay aware interconnect and timing variation
modeling for double patterning technology. In Proceedings of IEEE/ACM In-
ternational Conference on Computer-Aided Design, pages 488{493, San Jose,
CA, November 2008.
[29] K. Yuan, J.-S. Yang, and D. Z. Pan. Double patterning layout decomposi-
tion for simultaneous conflict and stitch minimization. In Proceedings of ACM
International Symposium on Physical Design, pages 107{114, San Diego, CA,
March 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42821-
dc.description.abstract對於小於22奈米的製程節點,雙圖案技術(double patterning technology)是目前用來增進可印刷性的熱門微影(lithography)方法。該技術係將一密集的佈局圖案分配到兩個獨立的光罩上,使各光罩上圖案的最小腳距(pitch)可以增加一倍,進而得到更好的印刷效果。在早先的研究中,為了改善分配的成功率,主要集中在縫合(stitch)插入方法的探討。然而,原生衝突(native conflict)的存在,將造成圖案分配的失敗,因為該衝突無法被任何一種縫合插入方法所解決,所以若設計中存在原生衝突,則勢必要訴諸於考慮製造性的重新設計,導致設計週期的延長。因此,開發一個於早期檢查圖案可分配性的分析工具是必要的。在本論文中,我們提出一個基於幾何結構的原生衝突預測方法以檢驗佈局的可分配性。此預測方法首先利用圖案投影的方式找出一組縫合插入的候選位置,並且保證可用這些候選位置建構出使衝突最少的組合。接著,利用此組候選位置,我們可探究原生衝突存在的充分條件。在原生衝突的預測後,我們提出一導線攪動(wire perturbation)演算法,其可盡可能地移除佈局中的原生衝突。該演算法係基於迭代式一維壓縮(compaction),且可很容易地嵌入於現有的壓縮系統中。實驗結果顯示我們提出的導線攪動演算法可以顯著地減少原生衝突的數目,並且在多數的測試電路上達到零衝突的效果。zh_TW
dc.description.abstractThe double patterning technology (DPT) is the most popular lithography solution for the sub-22$nm$ node to enhance pattern printability. In DPT, a dense layout pattern is decomposed into two separate masks so that its pitch can be doubled and thus lead to better printability. Previous works focus on stitch insertion to improve the decomposition success rate. However, there exist native conflicts (NC's) which cannot be resolved by any kind of stitch insertion. A design with native conflicts is not DPT-friendly and will eventually fail the decomposition, resulting in DFM redesign and longer design cycles. Therefore, it is desirable to develop an early stage analyzer for DPT decomposability checking. In this thesis, we propose a geometry-based method for NC prediction to examine the layout decomposability. The prediction method first exploits the set of stitch candidate positions by pattern projection. It guarantees that the optimal stitch combination with the fewest conflicts is within this set. Then, a sufficient condition for the NC existence is explored. After performing the NC prediction, a wire perturbation algorithm is presented to fix as many NC's in the layout as possible. The algorithm is based on iterative 1D-compaction and can easily be embedded into existing industrial compaction systems. Experimental results show that the proposed wire perturbation algorithm can significantly reduce the number of NC's and achieve NC-free for most test circuits.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:24:45Z (GMT). No. of bitstreams: 1
ntu-98-R96943074-1.pdf: 1692729 bytes, checksum: 318e68ccb66a543c0df84f0651bc58d7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgements i
Abstract (Chinese) ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables x
Chapter 1. Introduction 1
1.1 Challenges for Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Double Patterning Technology . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Pattern Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Overlay Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 DPT-Compliant Design Tools . . . . . . . . . . . . . . . . . . . . . 8
1.4 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 2. Preliminaries 13
2.1 Decomposition Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Native Conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 DPT-Compliant Redesign . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 3. Native Conflict Prediction 20
3.1 Pattern Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Condition of NC Existence . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Odd-Cycle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 4. NC-Aware Wire Perturbation 30
4.1 Symbolic Layout Representation . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 DPT-Friendly Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Wire Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Compaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Wire Constraint Graph Construction . . . . . . . . . . . . . . . . . 36
4.4.2 Point Constraint Graph Construction . . . . . . . . . . . . . . . . 37
4.4.3 Longest-Path Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 DPT Constraint Generation . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 Separating Wire Pairs Generation . . . . . . . . . . . . . . . . . . 40
4.5.2 DPT Point Constraint Edge . . . . . . . . . . . . . . . . . . . . . . 41
Chapter 5. Experimental Results 44
Chapter 6. Conclusions and Future Work 51
Bibliography 53
dc.language.isoen
dc.subject壓縮zh_TW
dc.subject雙圖案技術zh_TW
dc.subject導線攪動zh_TW
dc.subject原生衝突zh_TW
dc.subject微影zh_TW
dc.subjectWire Perturbationen
dc.subjectCompactionen
dc.subjectLithographyen
dc.subjectNative Conflicten
dc.subjectDouble Patterning Technologyen
dc.title雙圖案微影技術下考慮原生衝突之導線攪動zh_TW
dc.titleNative-Conflict-Aware Wire Perturbation for Double Patterning Technologyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江介宏(Jie-Hong Roland Jiang),陳宏明(Hung-Ming Chen),麥偉基(Wai-Kei Mak)
dc.subject.keyword雙圖案技術,導線攪動,原生衝突,微影,壓縮,zh_TW
dc.subject.keywordDouble Patterning Technology,Wire Perturbation,Native Conflict,Lithography,Compaction,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2009-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved