Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42819
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建德
dc.contributor.authorKeng-Fu Liuen
dc.contributor.author劉畊甫zh_TW
dc.date.accessioned2021-06-15T01:24:40Z-
dc.date.available2009-07-24
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citation胡智傑。2008。利用病毒誘導基因沉寂探討逆境誘導下菸草脯胺酸合成酵素的角色。國立臺灣大學農業化學研究所碩士論文。臺北,臺灣。
張惠如。2005。以病毒誘導基因沉寂策略進行菸草脯胺酸庫之代謝工程。國立中興大學植物病理學研究所碩士論文。臺中,臺灣。
鄭翔仁。2007。銅、鋅、鎘對於菸草吸收重金屬之交互影響。國立台灣大學農業化學研究所碩士論文。臺北,臺灣。
陳志威。2003。茄科作物脯胺酸代謝相關基因之選殖及其功能分析。國立中興大學植物病理學研究所碩士論文。臺中,臺灣。
蘇彥碩。2005。逆境下菸草 (Nicotiana benthamiana) 脯胺酸代謝基因之調控。國立台灣大學農業化學研究所碩士論文。臺北,臺灣。
Ahsan, N., D. G. Lee, S. H. Lee, K. Y. Kang, J. J. Lee, P. J. Kim, H. S. Yoon, J. S. Kim, and B. H. Lee. 2007. Ecess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67: 1182-1193.
Alia Saradhi, P. P. 1991. Proline accumulation under heavy metal stress. J. Plant Physiol. 138: 554-558.
Armengaud, P., L. Thiery, N. Buhot, G. G. March, and A. Savoure. 2004. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol. Plant 120: 442-450.
Aziz, A., J. Martin-Tanguy, and F. Larher. 1999. Salt stress-induced proline accumulation and changes in tyramine and ployamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci. 145: 83-91.
Baulcombe, D. C. 2004. RNA silencing in plants. Nature 431: 356-363.
Bawden, F. C., and F. M. Roberts. 1947. The influence of light intensity on the susceptibility of plants to certain viruses. Ann. Appl. Biol. 34: 286-296.
Bernal, M., P. Sánchez-Testillano, M. D. C. Risueño, and I. Yruela. 2006. Excess copper induces structural changes in cultured photosynthetic soybean cells. Funct. Plant Biol. 33: 1001-1012.
Bouchereau, A., A. Aziz, and J. Martin-Tanguy. 1999. Polyamines and environmental challenge: recent development. Plant Sci. 140: 103-125.
Chen, C. T., C. M. Chou, and C. H. Kao. 1994. Methyl jasmonate induces the accumulation of putrescine but not proline in detached rice leaves. J. Plant Physiol. 143: 119-121.
Chen, C. T., L. M. Chen, C. C. Lin, and C. H. Kao. 2001. Regulation of proline accumulation in detached rice leave exposed to excess copper. Plant Sci. 160: 283-290.
Chen, C. T., T. H. Chen, K. F. Lo, and C. Y. Chiu. 2004. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci. 166: 103-111.
Costa, G. and J. L. Morel. 1994. Water relation, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol. Biochem. 32: 561-570.
Delauney, A. J., C. A. Hu, P. B. Kavi-Kishor, and D. P. S. Verma. 1993. Cloning of ornithine δ-aminotransferase cDNA from Vigna aconitifolia by trans- complementation in Escherichia coli and regulation of proline biosynthesis. J. Biol. Chem. 268: 18673-18678.
Ekengren, S. K., Y. Liu, M. Schiff, S. P. Dinesh-Kumar, and G. B. Martin. 2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J. 36: 905-917.
Feirer, R. P., G. Mignon, and J. D. Litway. 1984. Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433-1435.
Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.
Fujita, T., A. Maggio, M. Garcia-Rios, R. A. Bressan and L. N. Csonka. 1998. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Δ1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol. 118: 661–674
Funck, D., B. Stadelhofer, and W. Koch. 2008. Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol. 8: 40-53.
Galston, A. W., R. Kauw-shawney, T. Altabella, and A. F. Tiburcio. 1995. Plant polyamines in reproductive activity and response to abiotic stress. Bot. Acta. 110: 197-207.
Girousse, C., Bournoville, R., and J. L. Bonnemain, 1996. Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol. 111: 109-113.
Guerinot, M. L. and D. E. Salt. 2001. Fortified foods and phytoremediation. two side of same coin. Plant Physiol. 125: 164-167.
Hall, J. H. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1-11.
Hare, P. D., W. A. Cress, and J. van Staden. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 50: 413-434.
Hou, W. H., X. Chen, G. L. Song, Q. H. Wang, and C. C. Chang. 2007. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol. Biochem. 45: 62-69.
Hsu, Y. T., and C. H. Kao. 2005. Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol. Plant. 124: 71-80.
Iglesias, A. A., and C. S. Andreo. 1984. Inhibition of zea-mays phosphoenolpyruvate carboxylase by copper and cadmium ions. Photosynthetica 18: 134-138.
Iiyama, K., T. B. Lam, and B. A. Stone. 1994. Covalent cross-links in the cell wall. Plant Physiol. 104: 315-320.
Jan, F. J., F. Fagoaga, S. Z. Pang, and D. Gonsalves. 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing . J. Gen. Virol. 81: 2103-2109.
Kakkar, R. K., P. K. Nagar, P. S. Ahuja, and V. K. Rai. 2000. Polyamines and Plant morphogenesis. Physiol. Plant. 43: 1-11.
Kastori, R., M. Petrovic, and N. Petrovic. 1992. Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J. Plant Nutri. 15: 2427-2439.
Kavi Kishor, P. B., Z. Hong, G. H. Miao, C. A. Hu, and D. P. S. Verma. 1995. Overexpression of Δ1-pryrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.
Kishor, P. B. K., Z. Hong, G. H. Miao, C. A. A. Hu, and D. P. S. Verna. 1995. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increase praline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.
Klahre, U., P. Crete, S. A. Leuenberger, V. A. Iglesias, and F. Meins. 2002. High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc. Natl. Acad. Sci. U.S.A. 99: 11981-11986.
Kumagai, M. H., J. Donson, G. Della-Cioppa, D. Harvey, K. Hanley, and L.K.Grill. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. U.S.A. 92: 1679-1683.
Kumar, A., M. Taylor, T. Altabella, and A. F. Tiburcio. 1997. Recent advances in polyamines research. Trends Plant Sci. 2: 124-130.
Larther, F., A. Aziz, C. Deleu, P. Lemesle, A. Ghaffar, F. Bouchard, and M. Plasman. 1998. Suppression of the osmoinduced proline response of rapeseed leaf discs by polyamines. Physiol. Plant. 102: 139-147.
López, M. L., J. R. Peralta-videa, J. G. Parsons, T. Benitez, and J. L. Gardea-torresdey. 2007. Gibberellic acid, kinetin, and the mixture indole-3-acetic acid–kinetin assisted with EDTA-induced lead hyperaccumulation in alfalfa plants. Environ. Sci. Technol. 41: 8165-8170.
Mallick, N., and F. H. Mohn. 2000.Reactive oxygen species: response of alga cell. J. Plant Physiol. 157: 183-193.
Metzlaff, M., M. O’ Dell, P. D. Cluster, and R. B. Flavell. 1997. RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88: 845-854.
Marschner, H. 1995. Mineral nutrition of higher plants. 2. ed. London: Academic Press
Nanjo, T., M. Kobayashi, Y. Yoshiba, Y. Sanada, K. Wada, H. Tsukaya, Y. Kakubari, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18: 185-193.
Patsikka, E., E. M. Aro, and E. Tryystjarvi. 1998. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant Physiol. 117: 619-627.
Pflieger, S., S. Blanchet, L. Camborde, G. Drugeon, A. Rousseau, M. Noizet, S. Planchais, and I. Jupin. 2008. Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector. Plant J. 56: 678-690.
Rajagopal, V. 1981. The influence of exogenous proline on the stomatal resistance in Vicia faba. Physiol. Plant. 52: 292-296.
Rakin, I., P. B. A. N. Kumar, S. Dushenkov, and D. E. Salt. 1994. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. 5: 285-290.
Ribarits, A., A. Abdullaev, A. Tashpulatov, A. Richter, E. Heberle-Bors, and A. Touraev. 2007. Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225: 1313–1324.
Samuel, G. 1934. The movement of tobacco mosaic virus within the plant. Ann. Appl. Biol. 21: 90-111.
Schat, H., S. S. Sharma, and R. Vooijs. 1997. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vuigaris. Physiol. Plant. 101: 477-482.
Schutzendubel, A., and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351-1365.
Sebela, M., A. Radová, R. Angelini, P. Tavladoraki, I. Frébort, and P. Pec. 2001. FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci. 160: 197-207.
Smith, K. L., G. W. Bryan, and J. L. Harwood. 1985. Changes in endogenous fatty-acids and lipid-synthesis associated with copper pollution in focus spp. J. Exp. Bot. 36: 663-669.
Song, J. J., S. K. Smith, G. J. Hannon, and L. Joshua-Tor. 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305: 1434-1437.
Spitzer, B., M. M. B. Zvi, M. Ovadis, E. Marhevka, O. Barkai, O. Edelbaum, I. Marton, T. Masci, M. Alon, S. Morin, I. Rogachev, A. Aharoni, and A. Vainstein. 2007. Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in petunia. Plant Physiol. 145: 1241-1250.
Stein, K., and G. Ohlenbusch. 1997. Inhibition of the enzyme phosphoenolpyruvate carboxylase (PEPC) by different pollutants. Talanta 44: 475-481.
Stevenson, F. J., and M. A. Cole. 1999. Cycle of soil- Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley and Sons 380.
Stiborova, M., R. Hromadkova, and S. Leblova. 1986. Effect of ions of heavy-metals on the photosynthetic characteristics of maize (Zea mays L.). Biologia 41: 1221-1228.
Tang, W. and R. J. Newton. 2005. Polyamine promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) Plantlets. Plant Cell Rep. 24: 581-589.
Tanyolac, D., Y. Ekmekci, and S. Unalan. 2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67: 89-98.
Theiss, C., P. Bohley, and J. Voigt. 2002. Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 128: 1-10.
Vaucheret, H., F. Vazquez, P. Crété, and D. P. Bartel. 2004. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18: 1187-1197.
Verslues, P. E., and R. E. Sharp. 1999. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. metabolic source of increased proline deposition in the elongation zone. Plant Physiol. 119: 1349-1360.
Voinnet, O., Y. M. Pinto, and D. C. Baulcombe. 1999. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. U.S.A. 96: 14147-14152.
Wang, G., L. Shang, A. W. G. Burgett, P. G. Harran, and X. Wan. 2007. Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division. Proc. Natl. Acad. Sci. U.S.A. 104: 2068-2073.
Wangeline, A. L., J. L. Burkhead, K. L. Hale, S. D. Lindblom, N. Terry, M. Pilon, and E. A. Pilon-Smits. 2004. Overexpression of ATP sulurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J. Environ. Qual. 33: 54-60.
Waterhouse, P. M., M. W. Graham, and M. B. Wang. 1998. Virus resistance and gene silencing in plants is induced by double stranded RNA. Proc. Natl. Acad. Sci. 95: 13959-13964.
Wege, S., A. Scholz, S. Gleissberg, and A. Becker. 2007. Highly efficient virus-induced gene silencing (VIGS) in california poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann. Bot. 100: 641–649.
White, T. A., N. Krishnan, D. F. Becker, and J. J. Tanner. 2007. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. J. Biol. Chem. 282: 14316-14327.
Williamson, C. L., and R. D. Slocum. 1992. Molecular cloning and evidence for osmoregulation of the Δ1-pryrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.). Plant Physiol. 100: 1464-1470.
Won, Y. S., J. S. Eun, M. Enrico, J. L. Yong, Y. Y. Yang, M. Jasinski, F. Cyrille, I. Hwang, and Y. S. Lee. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21: 914-919.
Xie, Z., L. K. Johansen, A. M. Gustafson, K. D. Kasschau, A. D. Lellis, D. Zilberman, S. E. Jacobsen, J. C. Carrington. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2: 642-652.
Xiong, Z. T., H. Wang. 2005. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr). Environ. Toxicol. 20: 188-194.
Yoshiba, Y., T. Kiyosue, K. Nakahima, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1997. Regulation of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095-1102.
Zengin, F. K., and O. Munzuroglu. 2005. Effects of some heavy metals on content of chlorophyll, praline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Crac. Ser. Bot. 47: 157-164.
Zhu, B., J. Su, M. Chang, D. P. S. Verma, L. Y. Fan, and R. Wu. 1998. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci. 139: 41-48.
Zhu, Y. L., E. A. H. Pilon-Smits, A. S. Tarun, S. U. Weber, L. Jouanin, and N. Terry. 1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 121: 1169-1177.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42819-
dc.description.abstract植生復育法乃利用植物吸收污染地之重金屬以復育土壤。但植物於過量重金屬環境下,會進行生理調節機制以抑制重金屬進入植體,因此,導致效果不彰。而脯胺酸的增加,可能是其中的一種阻擋機制,但是脯胺酸的增加是否與重金屬進入植體有關,尚無定論。若能改變脯胺酸的含量,或許能使重金屬的進入植體不受阻擋,而有助於植生復育之效能提高。本研究目的,在於探討能否利用病毒誘導基因沉寂 (VIGS) 系統調控菸草脯胺酸的含量,進而瞭解菸草植體內的銅含量與脯胺酸變化的關係,藉此評估此系統應用於植生復育之效能。脯胺酸的合成路徑主要是透過兩個關鍵酵素Δ1-pyrroline-5-carboxylate synthetase (P5CS) 與ornithine -δ-aminotransferase (OAT);而脯胺酸的代謝則主要是透過proline dehydrogenase (PDH)。本研究利用VIGS技術,於六週大的菸草進行接種,分別或同時降低上述基因之表現量。並於接種28天後,給予5 mM CuSO4處理六天。結果發現,抑制OAT基因會使菸草地上部植體乾重的銅含量增加1.2倍,而抑制P5CS基因亦增加為1.3倍,但同時抑制OAT與P5CS基因時,銅含量反而降為0.7倍。透過植物型態上的觀測,發現抑制OAT基因,在地上部方面會促使菸草側芽數增加,亦使菸草根部鬚根鮮重增加,而主根鮮重則降低。藉以推論,抑制OAT基因,會加速菸草發展鬚根,進一步促使銅含量提高。但抑制P5CS基因時,並無此現象。本研究也發現,抑制代謝相關基因PDH亦會使銅含量增加為2.5倍。由於抑制P5CS或PDH基因均可使脯胺酸的利用降低,顯示銅逆境下脯胺酸的增加阻擋銅進入植體之機制,可能與脯胺酸含量無關而是與脯胺酸的利用有關。此外,同時抑制OAT、P5CS及PDH基因,銅含量則增加為1.6倍,此結果介於單獨抑制OAT、P5CS基因與單獨抑制PDH基因之間,顯示同時抑制合成及代謝相關基因具有相互抵抗的作用,降低其復育效能。總言,利用病毒誘導基因沉寂系統,抑制菸草脯胺酸的合成與代謝,具有提高植生復育效能之潛力。zh_TW
dc.description.abstractPhytoremediation is one of soil remediation strategies that remove heavy metal contaminants with plants. Under excess heavy metal condition, plants tend to initiate physiological adjustments to reduce the entry of heavy metal and result in the decrease of phytoremediation efficiency. The accumulation of proline was considered to be one of the adjustments that block the entering process. It is hypothesis that the inhibition of proline accumulation in plants could benefit the application of phytoremediation by decreasing the blocking mechanism, although there’s no direct evidence showed the accumulation of proline can block the entering of heavy metal. This study using virus induced gene silencing (VIGS) system in regulating the proline content was try to reveal the relationship between the variation of proline content and the heavy metal content in tobacco, and to assess the possibility of applying this system on phytoremediation. The key enzymes of two proline synthesis pathways are Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine -δ-aminotransferase (OAT). The key enzyme of proline catabolism pathway is proline dehydrogenase (PDH). Six weeks old tobacco (Nicotiana benthamiana) plants were subjected for the application of VIGS to knock down the expression of proline metabolism related genes. After 28 days of inoculation, the plants were treated with 5 mM CuSO4 for six days. The results showed that the suppression of OAT gene enhanced tobacco copper content up to 1.2 fold, and the suppression of P5CS gene enhanced up to 1.3 fold. However, when both OAT and P5CS genes were suppressed the copper content decreased to 0.7 fold. In addition, the suppression of OAT gene increased the number of tobacco auxiliary buds, the fresh weight of fibrous root but decrease the fresh weight of tapper root. It is suggested that OAT suppression induced increasing of fibrous root might benefit the absorption of copper. Surprisingly, the suppression of PDH gene also enhanced copper content to 2.5 fold. Since both of the suppression on P5CS and PDH down regulated copper entry, the mechanism of blocking copper entry could be related to the utilization of proline instate of the proline level only. In addition, the result on the combined silencing of all proline metabolism related genes showed the amount of copper content was between those from the suppressed of proline synthesis and catabolism enzyme indicating that the silencing of proline metabolism relatived genes shows antagonism. In conclusion, the application of VIGS system to silence proline synthesis and catabolism relative genes has the potential to enhance the efficiency of phytoremediation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:24:40Z (GMT). No. of bitstreams: 1
ntu-98-R96623012-1.pdf: 4162132 bytes, checksum: aeed31c436b250f09840a18a07a7abc0 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要………………………………………………………………………………………I
Abatract..………………………………………………………………………………...II
目錄…………………………………………………………………………………….IV
縮寫對照表…………………………………………………………………………….VI
第一章、前言…………………………………………………………………………….1
第二章、前人研究
一、病毒誘導基因沉寂(VIGS)技術之發展與應用………..……………………..2
二、重金屬銅逆境對植物的影響………………………………………................5
三、重金屬與脯胺酸之關係…………………………………………................…6
四、脯胺酸生合成及代謝酵素相關基因………………………………................7
五、脯胺酸與植物生長分化之影響……………………………………................8
六、植生復育法…………………………………………………………..............10
第三章、研究目的……………………………………………………………………...11
第四章、材料與方法
一、植物材料……………………………………………………………..............12
二、誘導基因沉寂病毒載體…………………………………………...…...........12
三、OAT、P5CS、PDH基因片段之定序及分析…………………….…...............12
四、生體外轉錄作用 (in vitro transcription) …………………………...............13
五、銅逆境處理及樣品處理…………………………………...……...…………13
六、植體金屬離子濃度分析………………………………………….......……...14
七、乾旱逆境處理………………………………………………………..............14
八、水分含量………………………………………………………….......……...15
九、脯胺酸含量………………………………………………………...……...…15
十、菸草側芽數及病毒接種成功率測定………………………...……………...15
十一、數據分析………………………………………………………...……...…15
第五章、結果與討論
一、親緣演化分析…………………………………………………...…….……..16
二、影響基因沉寂效率之因子……………………………………………..........17
三、VIGS之確認.…………………….………………………………..…..……..18
四、VIGS處理對菸草外表型態的影響…………………………………............20
五、VIGS處理抑制脯胺酸合成基因對重金屬銅吸收之影響………..……..…21
六、VIGS處理抑制脯胺酸代謝基因對重金屬銅吸收之影響……...…….........22
七、VIGS處理同時抑制脯胺酸合成及代謝基因對重金屬銅吸收之影響……23
八、VIGS處理對金屬離子吸收之影響及植生復育效能潛力評估…………....23
九、結論…………………………………………………………………………..25
參考文獻…………………………………………………………………………….....26
dc.language.isozh-TW
dc.subject植生復育zh_TW
dc.subject病毒誘導基因沉寂zh_TW
dc.subject菸草zh_TW
dc.subject銅zh_TW
dc.subject脯胺酸zh_TW
dc.subjectvirus induce gene silencing (VIGS)en
dc.subjectNicotiana benthamianaen
dc.subjectcopperen
dc.subjectphytoremediationen
dc.subjectprolineen
dc.title利用病毒誘導基因沉寂系統探討銅逆境下菸草脯胺酸之生成及代謝zh_TW
dc.titleThe studies of proline metabolism in Nicotiana benthamiana under copper stress using virus-induced gene silencing systemen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹富智,鍾仁賜,邱志郁,林乃君
dc.subject.keyword病毒誘導基因沉寂,脯胺酸,植生復育,銅,菸草,zh_TW
dc.subject.keywordvirus induce gene silencing (VIGS),proline,phytoremediation,copper,Nicotiana benthamiana,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2009-07-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved