請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42807完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王亞男 | - |
| dc.contributor.author | Chung-Shien Wu | en |
| dc.contributor.author | 吳宗賢 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:24:12Z | - |
| dc.date.available | 2009-07-24 | - |
| dc.date.copyright | 2009-07-24 | - |
| dc.date.issued | 2009 | - |
| dc.date.submitted | 2009-07-24 | - |
| dc.identifier.citation | Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493.
Albert VA, Backlund A, Bremer K, Chase MW, Manhart JR, Mishler BD, Nixon KC. 1994. Functional constraints and rbcL evidence for land plant phylogeny. Ann. Mo. Bot. Gard. 81:534–567. Andersson SG, Kurland CG. 1998. Reductive evolution of resident genomes. Trends Microbiol. 6:263–268. Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K. 2004. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res. 11:93–99. Attardi G. 1985. Animal mitochondrial DNA: an extreme example of genetic economy. Int. Rev. Cytol. 93:93–145. Baldauf SL, Palmer JD. 1990. Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 15:262–265. Barbrook AC, Howe CJ, Purton S. 2006. Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci. 11:101–108. Berg OG, Kurland CG. 1997. Growth rate-optimised tRNA abundance and codon usage. J. Mol. Biol. 270:544–550. Bergsten J. 2005. A review of long-branch attraction. Cladistic 21:163–193. Bergthorsson U, Ochman H. 1998. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol. Biol. Evol. 15:6–16. Bowe LM, Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc. Natl. Acad. Sci. USA 97:4092–4097. Brenner ED, Stevenson DW, Twigg RW. 2003. Cycads: evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci. 8:446–452. Bungard RA. 2004. Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 26:235–247. Burleigh JG, Mathews S. 2004. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Am. J. Bot. 91:1599– 1613. Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. 2002. Selection for short introns in highly expressed genes. Nat. Genet. 31:415–418. Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol. Biol. Evol. 14:56–68. Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl. Acad. Sci. USA. 97:4086–4091. Chaw SM, Chang CC, Chen HL, Li WH. 2004. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J. Mol. Evol. 58:1–18. Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM. 2006. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol. Biol. Evol. 23:279–291. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK. 2006. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol. Evol. 23:2175–2190. Comeron JM. 2001. What controls the length of noncoding DNA? Curr. Opin. Genet. Dev. 11:652–659. Daley DO, Whelan J. 2005. Why genes persist in organelle genomes. Genome Biol. 6:110. Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, and Jansen RK. 2006. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor. Appl. Genet. 112:1503–1518. Dong H, Nilsson L, Kurland CG. 1996. Co-variation of tRNA abundance and codon usage in Escherichia coli. at different growth rates. J. Mol. Biol. 260:649–663. Downie SR, Katz-Downie DS, Watson MF. 2000. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. Am. J. Bot. 87:273–292. Doyle JA, Donoghue MJ. 1986. Seed land phylogeny and the origin of the angiosperms: an experimental cladistic approach. Botanical Rev. 52:321–431. Dufresne A, Garczarek L, Partensky F. 2005. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 6:R14. Emilsson V, Kurland CG. 1990. Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J. 9:4359–4366. Feild TS, Balun L. 2008. Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. New Phytol. 177:665–675. Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27:401–410. Fridman WE. 1998. The evolution of double fertilization and endosperm: an historical perspective. Sex Plant Repro. 11:6–16. Funk HT, Berg S, Krupinska K, Maier UG, Krause K. 2007. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol. 7:45. Gallois JL, Achard P, Green G, Mache R. 2001. The Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin. Gene 274:179–185. Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W. 1996. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol. Biol. Evol. 13:383–396. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH. 2003a. The chloroplast genome of the 'basal' angiosperm Calycanthus fertilis – structural and phylogenetic analyses. Plant Syst. Evol. 242:119–135. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH. 2003b. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol. Biol. Evol. 20:1499–1505. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH. 2004. The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol. Biol. Evol. 21:1445–1454. Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH. 2005. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol. Biol. Evol. 22:1813–1822. Goremykin VV, Salamini F, Velasco R, Viola R. 2009. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol. Biol. Evol. 26:99–110. Goulding SE, Olmstead RG, Morden CW, Wolfe KH. 1996. Ebb and flow of the chloroplast inverted repeat. Mol. Gen. Genet. 252:195–206. Gray MW, Lang BF, Cedergren R, et al., 1998. Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 26:865–878. Graybeal A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47:9–17. Gregory TR. 2004. Insertion–deletion biases and the evolution of genome size. Gene 324:15–34. Haberle RC, Fourcade HM, Boore JL, Jansen RK. 2008. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J. Mol. Evol. 66:350–361. Hajibabaei M, Xia J, Drouin G. 2006. Seed plant phylogeny: Gnetophytes are derived conifers and a sister group to Pinaceae. Mol. Phylogenet. Evol. 40:208–217. Hamby RK, Zimmer EA. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds). Molecular systematics of plants. New York: Chapman and Hall. pp. 50–91. Hasebe M, Ito M, Kofuji R, Iwatsuki K, Ueda K. 1992. Phylogeny of gymnosperms inferred from rbcL gene sequences. Bot. Mag. Tokyo 105:673–679. Hendrickson EL, Liu Y, Rosas-Sandoval G, Porat I. Söll D, Whitman WB, Leigh J.A. 2008. Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. J. Bacteriol. 190:2198–2205. Henschel JR, Seely MK. 2004. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert. Plant Ecol. 150:7–26. Hill KD, Chase MW, Stevenson DW, Hill HG, Schutzman B. 2003. The families and genera of cycads: a molecular phylogenetic analysis of cycadophyta based on nuclear and plastid DNA sequences. Int. J. Plant Sci. 164:933–948. Hillis DM. 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst. Biol. 47:3–8. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217:185–194. Hoegg S, Vences M, Brinkmann H, Meyer A. 2004. Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. Mol. Biol. Evol. 21:1188–1200. Holder M, Lewis PO. 2003. Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4:275–284. Huang J, Price RA. 2003. Estimation of the age of extant Ephedra using chloroplast rbcL sequence data. Mol. Biol. Evol. 20:435–440. Huelsenbeck J. 1995. Performance of phylogenetic methods in simulation. Syst. Biol. 44:17–48. Hupfer H, Swaitek M, Hornung S, Herrmann RG, Maier RM, Chiu WL, Sears B. 2000. Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome 1 of the five distinguishable Euoenthera plastomes. Mol. Gen. Genet. 263:581–585. Ickert-Bond SM, Wojciechowski MJ. 2004. Phylogenetic relationships in Ephedra (Gnetales): evidence from nuclear and chloroplast DNA sequence data. Syst. Botany 29:834–849. Jacquier A. 1996. Group II introns: elaborate ribozymes. Biochimie 78:474–487. Jansen RK, Kaittanis C, Lee SB, Saski C, Tomkins J, Alverson AJ, Daniell H. 2006. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol. Biol. 6:32. Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S. 2000. Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330. Kelchner SA. 2002. Group II Introns as phylogenetic tools: structure, function, and evolutionary constraints. Am. J. Bot. 89:1651–1669. Kim KJ, Lee HL. 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11:247–261. Kim KJ, Choi KS, Jansen RK. 2005. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol. Biol. Evol. 22:1783–1792. Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY. 2006. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep. 25:334–340. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150–163. Kurland CG, Ehrenberg M. 1987. Growth-optimizing accuracy of gene expression. Annu. Rev. Biophys. Biophys. Chem. 16:291–317. Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H. 2006. The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 7:61. Lee H.L, Jansen RK, Chumley TW, Kim JJ. 2007. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol. Biol. Evol. 24:1161–1180. Leebens-Mack J, Raubeson LA, Cui L, Kuehl J, Fourcade M, Chumley T, Boore JL, Jansen RK, dePamphilis CW. 2005. Identifying the basal angiosperms in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol. Biol. Evol. 22:1948–1963. Leitch IJ, Hanson L, Windield M, Parker J, Bennett MD. 2001. Nuclear DNA C-values complete familial representation in gymnosperms. Ann. Bot. 88:843–849. Lockhart PJ, Howe CJ, Barbrook AC, Larkum AWD, Penny D. 1999. Spectral analysis, systematic bias, and the evolution of chloroplasts. Mol. Biol. Evol. 16:573–576. Lonergan KM, Gray MW. 1993. Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. Science 259:812–816. Lowe TM, Eddy SR. 1997. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964. Magallón S, Sanderson MJ. 2002. Relationship among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am. J. Bot. 89:1991–2006. Maier RM, Neckermann K, Igloi GL, Kossel H. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251:614–628. Malek O, Lattig R, Hiesel K, Brennicke A, Knoop V. 1996. RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J. 15:1403–1411. Maniloff J. 1996. The minimal cell genome: ‘‘on being the right size”. Proc. Natl. Acad. Sci. USA 93:10004–10006. Maier RM, Neckermann K, Igloi GL, Kossel H. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251:614–628. Martin W, Stoebe B, Goremykin VV, Hapsmann S, Hasegawa M, Kowallik KV. 1998. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165. Martin W, Rujan T, Richly E, et al. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA 99:12246–12251. McCoy SR, Kuehl JV, Boore JL, Raubeson LA. 2008. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol. Biol. 8:130. Michel F, Umesono K, Ozeki H. 1989. Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30. Mikkola R, Kurland CG. 1991. Is there a unique ribosome phenotype for naturally occurring Escherichia coli.? Biochimie. 73:1061–1066. Mindell DP, Thacker CE. 1996. Rates of molecular evolution: phylogenetic issues and applications. Annu. Rev. Ecol. Syst. 27:279–303. Mira A, Ochman H, Moran, NA. 2001. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17:589–596. Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42:165–190. Nei M, Kumar S. 2000. Synonymous and nonsynonymous nucleotide substitution. In: Nei M, Kumar S (Eds.), Molecular Evolution and Phylogenetics. Oxford, New York, pp. 51–71. Nicholas KB, Nicholas HB Jr. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. Available at: http://www.nrbsc.org/gfx/genedoc/index.html. Nickrent DL, Parkinson CL, Palmer JD, Duff RJ. 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol. Biol. Evol. 17:1885–1895. Norstog KJ, Nicholls TJ. 1997. The biology of the cycads. Ithaca: Cornell University Press. Ohyama K, Fukuzawa H, Kohchi T, Shirai TH, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574. Ovcharenko I, Loots GG, Giardine BM, Hou M, Ma J, Hardison RC, Stubbs L. Miller, W. 2005. Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res. 15:184–194. Palmer JD. 1990. Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 6:115–120. Perry AS, Brennan S, Murphy DJ, Kavanagh TA, Wolfe KH. 2002. Evolutionary re-organisation of a large operon in adzuki bean chloroplast DNA caused by inverted repeat movement. DNA Res. 31:157–162. Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622. Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R. 2004. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am. J. Bot. 91:1582–1598. Race HL, Herrmann RG, Martin W. 1999. Why have organelles retained genomes? Trends Genet. 15:364–370. Rai HS, O'Brien HE, Reeves PA, Olmstead RG, Graham SW. 2003. Inference of higher-order relationships in the cycads from a large chloroplast data set. Mol. Phylogenet. Evol. 29:350–359. Rannala B, Yang Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43:304–311. Raubeson LA, Jansen RK. 1992a. A rare chloroplast-DNA structural mutation is shared by all conifers. Biochem. Syst. Ecol. 20:17–24. Raubeson LA, Jansen RK. 1992b. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699. Raubeson LA, Jansen RK. 2005. Chloroplast genomes of plants. In: Henry RI (ed). Plant diversity and evolution: genotypic and phenotypic variation in higher plants, Wallingford (UK): CABI. 45–68. Robinson SP, Downton WJ. Potassium. 1984. Sodium and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. Arch. Biochem. Biophys. 228:197–206. Rocha EPC, Danchin A. 2002. Base composition bias might result from competition for metabolic resources. Trends Genet. 18:291–294. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. Rothwell GW. 1981. The Callistophytales (Pteridospermopsida): reproductively sophisticated Paleozoic gymnosperms. Rev. Palaeobot. Palynol. 32:103–121. Rothwell GW. 1982. New interpretations of the earliest conifers. Rev. Palaeobot. Palynol. 37:7–28. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. Rydin C, Källersjö M, Friis EM. 2002. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. Int. J. Plant Sci. 163:197–214. Sanderson MJ, Wojciechowski MF, Hu JM, Khan TS, Brady SG. 2000. Error, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants. Mol. Biol. Evol. 17:782–797. Saski C, Lee S, Daniell H, Wood T, Tomkins J, Kim HG, Jansen RK. 2005. Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol. Biol. 59:309–322. Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. 1999 Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6:283–290. Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R. 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol. Biol. 45:307–315. Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM. 2002. The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol. Biol. Evol. 19:1602–1612. Schmidt M, Schneider-Poetsch HAW. 2002. The evolution of gymnosperms redrawn by phytochrome genes: the Gnetalas appear at the base of the gymnosperms. J. Mol. Evol. 54:715–724. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428:553–557. Selosse M, Albert B, Godelle B. 2001. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol. Evol. 16:135–141. Shikanai T. 2006. RNA editing in plant organelles: machinery, physiological function and evolution. Cell. Mol. Life Sci. 63:698–708. Shinozaki K, Ohme M, Tanaka M, et al. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5:2043–2049. Slamovits CH, Fast NM, Law JS, Keeling PJ. 2004. Genome compaction and stability in microsporidian intracellular parasites. Curr. Biol. 14:891–896. Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG. 2002. Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc. Natl. Acad. Sci. USA 99:4430–4435. Steane DA. 2005. Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res. 12:215–220. Stein DB, Conant DS, Ahearn ME, Jordan ET, Kirch SA, Hasebe M, Iwatsuki K, Tan MK, Thomson JA. 1992. Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proc. Natl. Acad. Sci. USA 89:1856–1860. Stenøien HK. 2007. Compact genes are highly expressed in the moss Physcomitrella patens. J. Evol. Biol. 20:1223–1229. Stevenson DW. 1990. Morphology and systematics of the Cycadales. Mem. N. Y. Bot. Gard. 57:8–55. Stewart WN, Rothwell GW. 1993. Paleobotany and the evolution of plants 2nd ed. Cambridge: Cambridge University Press. 521. Stewart CN Jr, Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 14:748–750. Strauss SH, Palmer JD, Howe GT, Doerksen H. 1998. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc. Natl. Acad. Sci. USA 85:3898–3902. Sugita M, Murayama Y, Sugiura M. 1994. Structure and differential expression of two distinct genes encoding the chloroplast elongation factor Tu in tobacco. Curr. Genet. 25:164–168. Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M. 2003. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res. 31:5324–5331. Suyama M, Bork P. 2001. Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet. 17:10–13. Swofford DL. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland (MA): Sinauer Associates. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM. 1996. Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Phylogenetic inference—Sunderland (MA): Sinauer Associates. 407–514. Tajima F. 1993. Simple methods for testing molecular clock hypothesis. Genetics 135:599–607. Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SG. 2002. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596–1599. Tillich M, Lehwark P, Morton BR, Maier UG. 2006. The evolution of chloroplast RNA editing. Mol. Biol. Evol. 23:1912–1921. Toor N, Hausner G, Zimmerly S. 2001. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152. Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M. 1992. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH, and the absence of rps16. Mol. Gen. Genet. 232:206–214. Turmel M, Otis C, Lemieux C. 2002a. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc. Natl. Acad. Sci. USA 99:11275–11280. Turmel M, Otis C, Lemieux C. 2002b. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol. Biol. Evol. 19:24–38. Turmel M, Otis C, Lemieux C. 2006. The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol. Biol. Evol. 23:1324–1338. van Ham RC, Kamerbeek J, Palacios C, et al. 2003. Reductive genome evolution in Buchnera aphidicola. Proc. Natl. Acad. Sci. USA 100:581–586. von Willert DJ, Armbruster N, Drees T, Zaborowski M. 2005. Welwitschia mirabilis: CAM or not CAM—what is the answer? Funct. Plant Biol. 32:389–395. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sci. USA 91:9794–9798. Wakasugi T, Hirose M, Horihata T, Tsudzuki T, Kössel H, Sugiura M. 1996. Creation of a novel protein-coding region at the RNA level in black pine chloroplasts: the pattern of RNA editing in the gymnosperm chloroplast is different from that in angiosperms. Proc. Natl. Acad. Sci. USA 93:8766–8770. Wang ZO. 2004. A new Permian Gnetalean cone as fossil evidence for supporting current molecular phylogeny. Ann. Bot. 94:281–288. Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 31:36. Wallace DC, Morowitz HJ. 1973. Genome size and evolution. Chromosoma 40:121–126. Whitfeld PR, Bottemley W. 1983. Organization and structure of chloroplast genes. Annu. Rev. Plant Physiol. 34:279–310. Wickett NJ, Zhang Y, Hansen SK, et al. 2008. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol. Biol. Evol. 25:393–401. Wolfe KH, Morden CW, Palmer JD. 1992. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc. Natl. Acad. Sci. USA 89:10648–10652. Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL. 2005. The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350:117–128. Won H, Renner SS. 2006. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)–clock calibration when outgroup relationships are uncertain. Syst. Biol. 55:610–622. Woolfit M, Bromham L. 2003. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol. Biol. Evol. 20:1545–1555. Wu CS, Wang YN, Liu SM, Chaw SM. 2007. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol. Biol. Evol. 24:1366–1379. Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42807 | - |
| dc.description.abstract | 現生的種子植物可分為五大群,蘇鐵植物(cycads)、銀杏(Ginkgo)、針葉樹植物(conifers)、買麻藤植物(gnetophytes)及被子植物(angiosperms)。然而,此五群植物間的親緣關係仍未有定論。為重新檢驗此一長久的爭議,本研究定序了台東蘇鐵(Cycas taitungensis)和小葉買麻藤(Gnetum parvifolium)的完整葉綠體基因組(chloroplast genome)。台東蘇鐵的葉綠體基因組為163,403 bp的圓形分子,其結構具有兩段25,074 bp的反向重複序列 (inverted repeat)。
本研究整理已知的37種陸生植物所共有的56個葉綠體基因組蛋白基因,以三種不同演算法重建親緣演化樹。所獲得之演化樹的樹形(topology)具一致性-皆支持現生所有種子植物、裸子植物、被子植物各為單系群(monophyly)。裸子植物單系群內,可再分成兩個次群組(subclade),即蘇鐵–銀杏群組及買麻藤–松群組。以上結果與gnetifer及gnepines兩假說一致。此外,本研究亦提出cpDNA結構上突變的證據來支持上述的親緣分析結果。重建的演化樹中,買麻藤植物的分支(branch)明顯長於其他裸子植物,表示買麻藤植物有相對快速的演化速率。以相對速率檢驗法(relative rate test)分析,顯示買麻藤植物的快速演化速率主要發生在密碼子(codon)的第三位置,以及密碼子的第一與第二位置的transversion核苷酸位點。此外,蘇鐵的葉綠體基因組仍保存部份的tufA基因序列,稱為假tufA基因,此假基因亦存在於Anthoceros及銀杏的葉綠體基因組。以此假基因建構的演化樹,顯示tufA基因可能在種子植物的共同祖先就已遺失,推算此遺失事件應發生在距今約3億年前。本研究提出tRNAPro-GGG在被子植物的共同祖先(存在時間距今約1.5億年前)時已遺失的假說。另外,對松科植物如何遺失一段反向重複序列亦提出新的看法。本研究雖同時支持gnetifer及gnepines假說,但無法判定何者較正確。因此,需要分析更多非松科的針葉樹(non-Pinaceae conifers)葉綠體基因組的完整序列,以解決裸子植物的親緣演化。 為進一步探討導致買麻藤植物相對快速演化速率的因子,本研究另外定序了四種裸子植物之完整葉綠體基因組:三種買麻藤植物-Ephedra equisetina (木賊麻黃:109,518 bp),Gnetum parvifolium (小葉買麻藤: 114,914 bp),和Welwitschia mirabilis (千歲蘭: 118,919 bp),以及一對照組植物:松科的台灣油杉(Keteleeria davidiana; 117,720 bp)。千歲蘭的葉綠體基因組在2008年已被完整定序,並為陸生光合作用植物中,最小且最緊密 (compact)的物種。然而,買麻藤綱之其他兩科-麻黃科 (Ephedrales) 及買麻藤科 (Gnetales) 的葉綠體基因組仍未被研究過,吾人對買麻藤綱植物的葉綠體基因組如何縮小(reduction)及緊密化(compaction)的機制仍未了解。 本研究發現Ephedra及Gnetum的葉綠體基因組比Welwitschia的更小且更緊密。買麻藤綱植物的葉綠體的共同特徵是: (1)遺失了18個在其他種子植物仍保留的基因;(2)基因間的序列 (spacer) 及基因的內顯子 (intron) 有明顯的序列刪除現象(sequence deletion);又後者在操作組間 (inter-operon) 比在操作組內 (intra-operon) 明顯,且偏好刪除一整段長序列,而不是單一核苷酸。由此可推論在買麻藤綱植物的葉綠體演化過程中,有一選擇壓力 (selection) 迫使其葉綠體基因組縮小及緊密化。此外,買麻藤綱植物的快速演化速率與葉綠體基因組含高比率的腺嘌呤 (adenine: A) 及胸腺嘧啶 (thymine: T)有關,並在統計上具有顯著意義。綜合上述的發現,本研究推論買麻藤綱植物之葉綠體基因組的縮小及緊密化是一種減少資源消耗的演化策略 (a lower-cost strategy);其目的為: (1)對抗其惡劣的生存環境與(2)提高本身的競爭力來抗衡同生育地周遭的被子植物。此一演化策略導致買麻藤綱植物具有較快的演化速率。前人的研究已發現,買麻藤綱植物的核基因組為裸子植物中最小的,此一特性對本研究所作的演化推論,提供了一有力的證據。 | zh_TW |
| dc.description.abstract | Phylogenetic relationships among the five groups of extant seed plants are presently unsettled. To re-examine this longstanding debate, we determined the complete chloroplast genomes (cpDNAs) of Cycas taitungensis and Gnetum parvifolium. The cpDNA of Cycas is a circular molecule of 163,403 bp with two typical large inverted repeats (IRs) of 25,074 bp each.
We inferred phylogenetic relationships among major seed plant lineages using concatenated 56 protein-coding genes in 37 land plants. Phylogenies, generated by the use of 3 independent methods, provide concordant and robust support for the monophylies of extant seed plants, gymnosperms, and angiosperms, respectively. Within the modern gymnosperms are 2 highly supported sister clades: Cycas–Ginkgo and Gnetum–Pinus. This result agrees with both the ‘‘gnetifer’’ and ‘‘gnepines’’ hypotheses. The sister relationships in Cycas–Ginkgo and Gnetum–Pinus clades are further reinforced by cpDNA structural evidence. Branch lengths of Cycas–Ginkgo and Gnetum are consistently the shortest and the longest, respectively, in all separate analyses. However, the Gnetum relative rate test revealed this tendency only for the 3rd codon positions and the transversional sites of the first 2 codon positions. A pseudo tufA located between psbE and petL genes is here first detected in Anthoceros (a hornwort), cycads, and Ginkgo. We demonstrate that the pseudo tufA is a footprint descended from the chloroplast tufA of green algae. The duplication of ycf2 genes and their shift into IRs should have taken place at least in the common ancestor of seed plants more than 300 MYA, and the tRNAPro-GGG gene was lost from the angiosperm lineage at least 150 MYA. Additionally, from cpDNA structural comparison, we propose an alternative model for the loss of large IR regions in black pine. More cpDNA data from non-Pinaceae conifers are necessary to justify whether the gnetifer or gnepines hypothesis is valid and to generate solid structural evidence for the monophyly of extant gymnosperms. To comprehend the mechanisms driving the rapid evolutionary rates of gnetophytes, four additional cpDNAs, including one from each of the three gnetophyte orders, Ephedra equisetina, Gnetum parvifolium, and W. mirabilis, and one from the non-Pinus Pinaceae, Keteleeria davidiana were determined. The cpDNA of Welwitschia mirabilis (the only species of Welwitschiales) was recently reported to be the most reduced and compact among photosynthetic land plants. However, cpDNAs of the other two gnetophyte lineages (viz. Ephedrales and Gnetales) have not yet been studied. It remains unclear what underlining mechanisms have downsized the cpDNA. To pin down major factors for cpDNA reduction and compaction in gnetophytes, we have determined the cpDNAs of E. equisetina (109,518 bp) and G. parvifolium (114,914 bp). They are not only smaller but more compact than that of W. mirabilis (118,919 bp). The gnetophyte cpDNAs have commonly lost at least 18 genes that are retained in other seed plants. Furthermore, they have significantly biased usages of AT-rich codons and shorter introns and intergenic spaces, which are largely due to more deletions at inter-operon than intra-operon spaces and removal of segment sequences rather than single-nucleotides. We showed that the reduced gnetophyte cpDNAs clearly resulted from selection for economy by deletions of genes and non-coding sequences, which then led to the compactness and the accelerated substitution rates. The smallest C-values in gnetophyte nuclear DNAs and the competitive or resource-poor situations encountered by gnetophytes further suggest a critical need for an economic strategy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:24:12Z (GMT). No. of bitstreams: 1
ntu-98-D92625002-1.pdf: 5266446 bytes, checksum: eb3226db3d97394bede6a5ae8c34b385 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
中文摘要…………………………………………………………………………. Ⅰ 英文摘要…………………………………………………………………………. Ⅲ Chapter 1. Introduction…………………………………………………………… 1 1.1 Backgrounds of cycads and gnetophytes………………………………… 1 1.2 The issue of the seed plant phylogeny…………………………………… 2 1.3 Effects of the long-branch attraction on phylogenetic studies…………... 3 1.4 Useful information from chloroplast genomes for addressing phylogenies……………………………………………………………… 3 1.5 The genetic background of chloroplast genomes………………………... 4 1.6 Evolution of genome reduction………………………………………….. 4 1.7 Aims of this study………………………………………………………... 5 Chapter 2. Materials and Methods………………………………………………... 7 2.1 CpDNA extraction of C. taitungensis and sequencing…………………... 7 2.2 Total DNA extraction, cpDNA amplification and sequencing…………... 7 2.3 Gene annotations and repeat sequence analyses………………………… 8 2.4 Sequencing of chloroplast ycf2 and tufA genes in other cycads and Ginkgo…………………………………………………………………… 8 2.5 Reverse transcriptase–polymerase chain reaction……………………….. 9 2.6 Sequence alignments and phylogenetic analyses ……………………….. 10 2.7 Dot-plot analyses………………………………………………………… 11 2.8 Estimations of substitution rates and effective number of codons (ENC).. 11 2.9 Statistic analyses…………………………………………………………. 12 Chapter 3. Results………………………………………………………………… 13 3.1 Characteristics of the C. taitungensis cpDNA…………………………… 13 3.2 Identification of the pseudo tufA gene…………………………………… 14 3.3 Only one RNA-editing site in the Cycas cpDNA predicted …………….. 15 3.4 Phylogenetic trees reconstructed by three different methods reveal consistent results………………………………………………………… 15 3.5 Comparative structural changes of cpDNAs support the cpDNA phylogeny ………………………………………………………………. 16 3.6 CpDNAs of Ephedra equisetina and Gnetum parvifolium are the top two smallest among known photosynthetic vascular plants…………………. 17 3.7 Two unusual RNA-editing sites in the Ephedra cpDNA………………... 18 3.8 Structural reorganizations in Keteleeria and gnetophyte cpDNAs……… 18 3.9 Reduction of the cpDNAs of Ephedra, Gnetum, and Welwitschia by multiple gene losses……………………………………………………... 19 3.10 CpDNA reduction by intron downsizing……………………………….. 19 3.11 Reduction and compaction by deletions of more inter-operon than intra-operon spaces and of more segments than single nucleotides…….. 20 3.12 Accelerated substitution rates have strong associations with elevated biased usage of AT-rich codons…………………………………………. 21 Chapter 4. Discussion…………………………………………………………….. 23 4.1 Evolution of cpDNA organizations in seed plants ……………………… 23 4.2 Synteny of an ancient tufA sequence in the cpDNAs of Cycads, Ginkgo, and a hornwort…………………………………………………………… 24 4.3 Reduction of RNA-editing sites in the cpDNA of Cycas………………... 25 4.4 CpDNA phylogeny suggests that extant gymnosperms and angiosperms are separate monophyletic clades………………………………………... 25 4.5 The deepest split in the evolution of extant gymnosperms is between the Cycas–Ginkgo and the Gnetales–Pinales clades………………………… 26 4.6 Substitution rates and long-branch attraction nearly equal rates in Cycas and Ginkgo………………………………………………………………. 27 4.7 Accelerated rates in Gnetum and LBA…………………………………... 27 4.8 Gene orders near IR/LSC junctions contain useful phylogenetic information………………………………………………………………. 29 4.9 Indels and gene loss/retention lend evidence to the phylogeny within gymnosperms……………………………………………………………. 30 4.10 Duplication of ycf2 gene in IRB regions predates the divergence of seed plants rather than leafy plants…………………………………………... 31 4.11 An alternative model for the loss of large IR regions in the Pinus cpDNA………………………………………………………………….. 31 4.12 CpDNA compaction is the consequence of selection for a reduced genome………………………………………………………………….. 33 4.13 Structural reorganization in the LSC region occurred before the divergence of the three gnetophyte lineages……………………………. 35 4.14 An alternative model for structural reorganizations in the SSC and IR regions of gnetophyte cpDNAs…………………………………………. 35 4.15 Accelerated substitution rates likely resulted from selection for economy or a lower-cost strategy………………………………………. 37 Chapter 5. Conclusions…………………………………………………………… 40 References………………………………………………………………………… 42 Appendix………………………………………………………………………….. 93 Publications……………………………………………………………………….. 94 Figure list Figure 1. The chloroplast genome of Cycas taitungensis………………………… 59 Figure 2. Confirmation of the transcriptional ability of orf75……………………. 60 Figure 3. Phylogenies of 37 land plants based on 56 cpDNA protein-coding genes……………………………………………………………………. 61 Figure 4. A NJ tree of 37 land plants inferred from the first two codon positions of 56 cpDNA protein-coding genes……………………………………... 63 Figure 5. Comparison of the genes flanking the IR–LSC junctions (JLA and JLB) among 8 land plants……………………………………………………... 64 Figure 6. CpDNA maps of Ephedra equisetina, Gnetum parvifolium, Welwitschia mirabilis, and Keteleeria davidiana…………………………………….. 65 Figure 7. Alignments of trnR-CCG and trnI-GAU genes, respectively…………... 67 Figure 8. Dot-plot analyses of three sampled gnetophyte cpDNAs against the Cycas cpDNA…………………………………………………………… 68 Figure 9. A proposed secondary structure of the Ephedra rpl16 intron…………... 69 Figure 10. Relationships of mean sizes between two kinds of intergenic spaces in seven sampled gymnosperm cpDNAs…………………………………... 70 Figure 11. An alignment of pseudo chlL and functional chlL genes……………… 71 Figure 12. Comparisons of frequencies of AT-rich and GC-rich codons in the cpDNAs of seven elucidated gymnosperms…………………………... 73 Figure 13. A simplified phylogenetic tree with supports of cpDNA structural changes………………………………………………………………... 74 Figure 14. A NJ tree based on tufA genes from cyanobacteria, green algae, and land plants…………………………………………………………….. 75 Figure 15. Verification of the presence of two IR regions in the cpDNAs of Ginkgo biloba and Gnetum parvifolium, and a ycf2 in each IR………. 76 Figure 16. A 2-step model for the loss of the IRB region in the ancestral cpDNA of Pinus thunbergii……………………………………………………. 77 Figure 17. Two hypothetical models for the evolution of genomic reorganizations in the cpDNAs of gnetophytes………………………………………... 78 Table List Table 1. Grouping of 56 protein-coding genes common to the cpDNAs sampled in the dataset…………………………………………………………….. 80 Table 2. Accession numbers and references for the taxa used in this study 81 Table 3. Comparisons of coding and pseudo genes among the cpDNAs of Cycas, Ephedra, Gnetum, Welwitschia, and Keteleeria………………………... 83 Table 4. Gene content of the C. taitungensis chloroplast genome………………... 85 Table 5. Position, length of a repetitive element, and sequence of each repeat found in the chloroplast genome of Cycas……………………………… 86 Table 6. Tajima's relative rate tests between Cycas, Gnetum and other five seed plant lineages based on concatenated 56 chloroplast protein-coding genes…………………………………………………………………….. 87 Table 7. Comparisons of characteristics among 9 cpDNAs of photosynthetic vascular plants…………………………………………………………... 88 Table 8. Comparisons of intron lengths among 7 elucidated gymnosperm cpDNAs…………………………………………………………………. 90 Table 9. Substitution rates in 7 elucidated gymnosperm cpDNAs based on estimations of concatenated 58 common protein-coding genes………… 92 | - |
| dc.language.iso | en | - |
| dc.subject | 木賊麻黃 | zh_TW |
| dc.subject | 台東蘇鐵 | zh_TW |
| dc.subject | 台灣油杉 | zh_TW |
| dc.subject | 體基因組 | zh_TW |
| dc.subject | 譜系分 | zh_TW |
| dc.subject | 買麻藤 | zh_TW |
| dc.subject | 小葉 | zh_TW |
| dc.subject | Welwitschia mirabilis | en |
| dc.subject | Cycas taitungensis | en |
| dc.subject | Ephedra equisetina | en |
| dc.subject | Gnetum parvifolium | en |
| dc.subject | Keteleeria davidiana | en |
| dc.subject | Phylogeny | en |
| dc.subject | Chloroplast genome | en |
| dc.title | 現生裸子植物的葉綠體基因組演化與親緣研究 | zh_TW |
| dc.title | Chloroplast Genomic Evoluion and Phylogeny of Extant
Gymnosperms | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 97-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 趙淑妙 | - |
| dc.contributor.oralexamcommittee | 何國傑,簡慶德,潘富俊,李明仁,曲芳華 | - |
| dc.subject.keyword | 葉,綠,體基因組,台東蘇鐵,木賊麻黃,小葉,買麻藤,台灣油杉,譜系分, | zh_TW |
| dc.subject.keyword | Chloroplast genome,Cycas taitungensis,Ephedra equisetina,Gnetum parvifolium,Keteleeria davidiana,Phylogeny,Welwitschia mirabilis, | en |
| dc.relation.page | 93 | - |
| dc.rights.note | 有償授權 | - |
| dc.date.accepted | 2009-07-24 | - |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
