Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42801
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于天立(Tian-Li Yu)
dc.contributor.authorWei-Kai Linen
dc.contributor.author林偉楷zh_TW
dc.date.accessioned2021-06-15T01:23:59Z-
dc.date.available2009-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citation[1] P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions
for complex tasks. In Proceedings of the 5th International Conference
on Genetic Algorithms, pages 264–270, San Francisco, CA, USA, 1993. Morgan
Kaufmann Publishers Inc.
[2] P. J. Angeline and J. B. Pollack. Coevolving high-level representations. In
C. Langton, editor, Artificial Life III, pages 55–71, Reading MA, 1994. Addison-
Wesley.
[3] R. Axelrod. The evolution of strategies in the iterated prisoner’s dilemma. In
Genetic algorithms and simulated annealing. L. Davis editor, Morgan Kaufman,
1987.
[4] R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science,
211(4489):1390–1396, 1981.
[5] Y. Azaria and M. Sipper. Gp-gammon: Genetically programming backgammon
players. Genetic Programming and Evolvable Machines, 6(3):283–300, September
2005.
[6] Y. Azaria and M. Sipper. Gp-gammon: Using genetic programming to evolve
backgammon players. In M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert,
and M. Tomassini, editors, Proceedings of the 8th European Conference on Genetic
Programming, volume 3447 of Lecture Notes in Computer Science, pages
132–142, Lausanne, Switzerland, 30 Mar. - 1 Apr. 2005. Springer.
[7] H.-G. Beyer and H.-P. Schwefel. Evolution strategies –a comprehensive introduction.
Natural Computing: an international journal, 1(1):3–52, 2002.
[8] A. Bhatt, P. Varshney, and K. Deb. In search of no-loss strategies for the game
of tic-tac-toe using a customized genetic algorithm. In GECCO ’08: Proceedings
of the 10th annual conference on Genetic and evolutionary computation, pages
889–896, New York, NY, USA, 2008. ACM.
[9] A. Bucci and J. B. Pollack. Order-theoretic analysis of coevolution problems:
Coevolutionary statics. In Proceedings of the GECCO-2002 Workshop on Coevolution:
Understanding Coevolution, pages 229–235, 2002.
[10] K. Chellapilla and D. Fogel. Evolving neural networks to play checkers without
relying on expert knowledge. Neural Networks, IEEE Transactions on,
10(6):1382–1391, Nov 1999.
[11] K. Chellapilla and D. B. Fogel. Review of efforts to evolve strategies to play
checkers as well as human experts. In B. Bosacchi, D. B. Fogel, and J. C.
Bezdek, editors, Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 4120 of Presented at the Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference, pages 43–51, Oct. 2000.
[12] J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. Richards. Punctuated equilibria:
a parallel genetic algorithm. In Proceedings of the Second International
Conference on Genetic Algorithms on Genetic algorithms and their application,
pages 148–154, Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.
[13] Y. Davidor. A naturally occurring niche and species phenomenon: The model
and first results. In ICGA, pages 257–263, 1991.
[14] E. D. de Jong and J. B. Pollack. Ideal evaluation from coevolution. Evolutionary
Computation, 12(2):159–192, June 2004.
[15] E. D. de Jong, K. O. Stanley, and R. P. Wiegand. Introductory tutorial on
coevolution. In GECCO ’07: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pages 3133–3157, New York,
NY, USA, 2007. ACM.
[16] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975.
[17] K. A. De Jong. Evolutionary computation: a unified approach. MIT Press,
2006.
[18] K. Deb and D. E. Goldberg. Analyzing deception in trap functions, illigal report
no. 91009. Technical report, University of Illinois at Urbana-Chmapaign, Illinois
Genetic Algorithms Laboratory, Urbana, IL, 1991.
[19] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu. Evolutionary
computation. CRC Press, Inc., Boca Raton, FL, USA, 2000.
[20] P. K. Dutta. Strategies and games: theory and practice. MIT Press, 1999.
[21] N. Eldredge and S. J. Gould. Models in Paleobiology: Punctuated Equilibria:
An Alternative to Phyletic Gradualism, chapter 5, pages 82–115. Freeman,
Cooper and Co, 1972.
[22] V. Feldman. Evolvability from learning algorithms. In STOC ’08: Proceedings
of the 40th annual ACM symposium on Theory of computing, pages 619–628,
New York, NY, USA, 2008. ACM.
[23] S. Ficici, O. Melnik, and J. Pollack. A game-theoretic and dynamical-systems
analysis of selection methods in coevolution. Evolutionary Computation, IEEE
Transactions on, 9(6):580–602, December 2005.
[24] S. G. Ficici and J. B. Pollack. Game theory and the simple coevolutionary
algorithm: Some preliminary results on fitness sharing. In R. K. Belew and
H. Juill`e, editors, GECCO 2001 Workshop on Coevolution: Turning Adaptive
Algorithms upon Themselves, pages 2–7, San Francisco, California, USA, 7 2001.
[25] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1989.
[26] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal
function optimization. In Proceedings of the Second International Conference
on Genetic Algorithms on Genetic algorithms and their application,
pages 41–49, Hillsdale, NJ, USA, 1987. L. Erlbaum Associates Inc.
[27] P. B. Grosso. Computer simulations of genetic adaptation: parallel subcomponent
interaction in a multilocus model. PhD thesis, University of Michigan,
Ann Arbor, MI, USA, 1985.
[28] O. Hammami, K. Kuroda, Q. Zhao, and K. Saito. Coevolvable hardware platform
for automatic hardware design of neural networks. Industrial Technology
2000. Proceedings of IEEE International Conference on, 1:509–514 vol.2, Jan.
2000.
[29] G. R. Harik. Finding multimodal solutions using restricted tournament selection.
In Proceedings of the 6th International Conference on Genetic Algorithms,
pages 24–31, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.
[30] J. H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge,
MA, USA, 1992.
[31] E. Kita, T. Tamaki, and H. Tanie. Structural design using genetic algorithm.
In IUTAM Symposium on Evolutionary Methods in Mechanics, pages 163–172,
2004.
[32] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.
[33] S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, University
of Illinois at Urbana-Champaign, Champaign, IL, USA, 1995.
[34] B. L. Miller, , and D. E. Goldberg. Genetic algorithms, tournament selection,
and the effects of noise. Complex Systems, 9:193–212, 1995.
[35] J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295,
September 1951.
[36] C. K. Oei, D. E. Goldberg, and S. Chang. Tournament selection, niching, and
the preservation of diversity. Technical report, Univ. of Illinois, Urbana, Illinois
Genetic Algorithms Laboratory, Tech. rep. 91011, 1991. Cite by Sareni 1998.
[37] C. Ong, H. Quek, K. Tan, and A. Tay. Discovering chinese chess strategies
through coevolutionary approaches. Computational Intelligence and Games,
2007. CIG 2007. IEEE Symposium on, pages 360–367, April 2007.
[38] M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic
algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO2001), pages 511–518. Morgan Kaufmann, 2001.
[39] J. B. Pollack and A. D. Blair. Co-evolution in the successful learning of
backgammon strategy. Machine Learning, 32(3):225–240, September 1998.
[40] J. B. Pollack, A. D. Blair, and M. Land. Coevolution of a backgammon player.
In Proceedings Artificial Life V, pages 92–98. MIT Press, 1996.
[41] M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach to
function optimization. In PPSN III: Proceedings of the International Conference
on Evolutionary Computation. The Third Conference on Parallel Problem
Solving from Nature, pages 249–257, London, UK, 1994. Springer-Verlag.
[42] M. A. Potter and K. A. De Jong. Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evol. Comput., 8(1):1–29, 2000.
[43] I. Rechenberg. Case studies in evolutionary experimentation and computation.
Computer Methods in Applied Mechanics and Engineering, 186(2-4):125 – 140,
2000.
[44] C. W. Reynolds. Competition, coevolution and the game of tag. In R. A. Brooks
and P. Maes, editors, Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems, pages 59–69, MIT, Cambridge,
MA, USA, 6-8 July 1994. MIT Press.
[45] C. D. Rosin and R. K. Belew. New methods for competitive coevolution. Evol.
Comput., 5(1):1–29, 1997.
[46] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2 edition, 2003.
[47] A. L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal, 3:211–229, 1959.
[48] A. L. Samuel. Some studies in machine learning using the game of checkers.
ii—recent progress. IBM Journal of Research and Development, 11:601–617,
1967.
[49] C. Savage. A survey of combinatorial gray codes. SIAM Rev., 39(4):605–629,
1997.
[50] C. E. Shannon. Programming a computer for playing chess. Philosophical
Magazine, 41:256–275, 1950.
[51] G. Sywerda. Uniform crossover in genetic algorithms. In Proceedings of the
third international conference on Genetic algorithms, pages 2–9, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.
[52] G. Tesauro. Practical issues in temporal difference learning. Mach. Learn.,
8(3-4):257–277, 1992.
[53] G. Tesauro. Temporal difference learning and td-gammon. Commun. ACM,
38(3):58–68, 1995.
[54] L. G. Valiant. Evolvability. Electronic Colloquium on Computational Complexity
(ECCC), 6(120), 2006.
[55] L. G. Valiant. Evolvability. In Proceedings of 32nd International Symposium
on Mathematical Foundations of Computer Science, pages 22–43, 2007.
[56] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.
[57] R. A. Watson and J. B. Pollack. Coevolutionary dynamics in a minimal substrate.
In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2001, pages 702–709. Morgan Kaufmann, 2001.
[58] S. Wright. Evolution and the Genetics of Populations: A Treatise. University
of Chicago Press, 1968.
[59] A. Yang, Y. Shan, and L. T. Bui. Success in Evolutionary Computation.
Springer Berlin / Heidelberg, 2008.
[60] K. Y. Yip, P. Patel, P. M. Kim, D. M. Engelman, D. McDermott, and M. Gerstein.
An integrated system for studying residue coevolution in proteins. Bioinformatics,
24(2):290–292, 2008.
[61] T. Yu, L. Davis, C. Baydar, and R. Roy. Evolutionary Computation in Practice.
Springer Berlin / Heidelberg, 2008.
[62] T.-L. Yu and W.-K. Lin. Optimal sampling of genetic algorithms on polynomial
regression. In GECCO ’08: Proceedings of the 10th annual conference on
Genetic and evolutionary computation, pages 1089–1096, New York, NY, USA,
2008. ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42801-
dc.description.abstract這篇論文探討共同演化的基因演算法用於演化賽局策略的能力。更確切的說,這篇論文的討論限定在雙人、零和且對稱的賽局。在這樣的前提下,單純策略和混合策略被分開討論。要共同演化出一個混合策略的納許均衡是具有挑戰性的,因為均衡的策略不能獲得比其他策略更高的得益期望值。這個論點在剪刀、石頭、布的實驗中被驗證,因為所有的混合策略產生的得益期望值一樣,使得共同演化無法收斂到納許均衡。另一方面,在一些賽局中,單純策略是較容易共同演化的,尤其是族群之多樣性被特別保持的時候。實驗上,使用維持生態位的技巧,例如限制競爭式選擇法、確定性擁擠法,對於共同演化都有明顯的助益。更進一步,內文也展示了在共同演化中,族群大小和評估個體時最佳的對手數量之間,權衡折中的關係。在論文的最後,實驗上示範了一個賽局遊戲,相對於棋盤需要指數大小的族群才能演化,也就是仍存在對共同演化來說較困難的賽局。在這樣的賽局中,需要在族群中維持指數的對手來演化出最佳的策略。zh_TW
dc.description.abstractThis thesis investigates the ability of coevolutionary genetic algorithms to evolve game-playing strategies. Specifically, it focuses on two-player, zero-sum and symmetric games with both pure and mixed strategies. Pure and mixed strategies are discussed separately. Co-evolving the mixed strategy Nash equilibrium is challenging since the Nash strategy does not yield a higher payoff than other strategies. This argument is verified on the game of rock-paper-scissor, where all mixed strategies yield the same expected payoff and fail to converge to the Nash quilibrium. On the other hand, pure strategies are more co-evolvable with some games especially when the diversity is maintained in the population. Empirically, adopting niching
techniques such as restricted tournament selection and deterministic crowding helps coevolution. Furthermore, this work empirically shows the trade-off between the population size and the optimal number of opponents used to evaluate an individual. Finally, this thesis demonstrates the existence of game strategies that require an exponentially large population with respect to the size of the game. In such games, exponentially many opponents need to be maintained to evolve an optimal strategy.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:23:59Z (GMT). No. of bitstreams: 1
ntu-98-R96921073-1.pdf: 997921 bytes, checksum: 65b4d843af50e6c2a0968cfab5b0df64 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgments i
中文摘要ii
Abstract iii
Contents iv
List of Figures vi
List of Algorithms viii
1 Introduction 1
2 Background of Game Theory 3
2.1 The Normal-Form Game . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Pure Strategies and Mixed Strategies . . . . . . . . . . . . . . . . . . 4
2.3 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Two-Player, Symmetric, Zero-Sum and Turn-Based Games . . . . . . 5
3 Background of Genetic Algorithms and Coevolutionary Algorithms 7
3.1 Simple Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Niching Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Coevolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Mixed Strategy Games, Less Co-Evolvable 19
4.1 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Pure Strategy Games, More Co-Evolvable 23
5.1 Testing Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Coevolutionary Genetic Algorithm with Niching . . . . . . . . . . . . 26
5.3 Enhancing Efficiency via Sampling . . . . . . . . . . . . . . . . . . . 40
6 A Less Co-Evolvable Pure Strategy Game 43
6.1 Bit-Flipping Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7 Conclusions 47
Bibliography 49
dc.language.isoen
dc.subject最佳取樣zh_TW
dc.subject基因演算法zh_TW
dc.subject共同演化zh_TW
dc.subject賽局理論zh_TW
dc.subject生態位技巧zh_TW
dc.subjectgame theoryen
dc.subjectoptimal samplingen
dc.subjectniching techniquesen
dc.subjectgenetic algorithmen
dc.subjectcoevolutionen
dc.title共同演化的基因演算法應用於賽局的共同演化能力zh_TW
dc.titleCo-Evolvability of Games in Coevolutionary Genetic Algorithmsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張時中(Shi-Chung Chang),陳穎平(Ying-Ping Chen)
dc.subject.keyword基因演算法,共同演化,賽局理論,生態位技巧,最佳取樣,zh_TW
dc.subject.keywordgenetic algorithm,coevolution,game theory,niching techniques,optimal sampling,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
974.53 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved