Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42793
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorTsing-Hua Wuen
dc.contributor.author吳清華zh_TW
dc.date.accessioned2021-06-15T01:23:41Z-
dc.date.available2014-07-24
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-24
dc.identifier.citation1.Yuh-Shyong, Y., L. Ude, and B.C.P. Hu, Prescription chips. Circuits and Devices Magazine, IEEE, 2002. 18(5): p. 8-16.
2.Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
3.Lin, C.-W., et al., Admittance loci design method for multilayer surface plasmon resonance devices. Sensors and Actuators B: Chemical, 2006. 117(1): p. 219-229.
4.Ashutosh, K.M., Nitric oxide and asthma: a review. Current Opinion in Pulmonary Medicine, 2000. 6(1): p. 21-25.
5.Nicolas-Debarnot, D. and F. Poncin-Epaillard, Polyaniline as a new sensitive layer for gas sensors. Analytica Chimica Acta, 2003. 475(1-2): p. 1-15.
6.Krzysztof, M., Chemical Reactivity of Polypyrrole and Its Relevance to Polypyrrole Based Electrochemical Sensors. Electroanalysis, 2006. 18(16): p. 1537-1551.
7.Ameer, Q. and S.B. Adeloju, Polypyrrole-based electronic noses for environmental and industrial analysis. Sensors and Actuators B: Chemical, 2005. 106(2): p. 541-552.
8.Yamazoe, N., G. Sakai, and K. Shimanoe, Oxide Semiconductor Gas Sensors. Catalysis Surveys from Asia, 2003. 7(1): p. 63-75.
9.Nagata, K. and H.H. (Eds.), Real-time Analysis of Biomolecular Interactions. 2000, TOKYO: Springer-Verlag.
10.Salamon, Z., H.A. Macleod, and G. Tollin, Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1997. 1331(2): p. 131-152.
11.Salamon, Z., H.A. Macleod, and G. Tollin, Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1997. 1331(2): p. 117-129.
12.Mircea S. Rogalski and Stuart B. Palmer, Solid state physics. 2000: Gordon & Breach Science publishers.
13.Chen, K.-P., Design and Fabrication of Optical Thin Film for SPR Bio-Sensor Chip, in Institute of Biomedical Engineering. 2004, National Taiwan University: Taipei.
14.Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1-2): p. 3-15.
15.Cuthbertson, B.H., S. Stott, and N.R. Webster, Use of inhaled nitric oxide in British intensive therapy units. British Journal of Anaesthesia, 1997. 78(6): p. 696-700.
16.Shea, J.J., Handbook of Conducting Polymers, 2nd Edition. Electrical Insulation Magazine, IEEE, 1999. 15(1): p. 37-37.
17.Slight, A.W., Electrochromism: Fundamentals and application : By P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky. VCH Publishers, Weinheim, Frg, 1995, xxii + 216 pages, price $98 hardcover. ISBN 3-527-29063-X. Materials Research Bulletin, 1996. 31(2): p. 247-247.
18.H.W. Heuer, R.W.S.K., Electrochromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate). Advanced Functional Materials, 2002. 12(2): p. 89-94.
19.M. Vazquez, et al., Solution-cast films of poly(3,4-ethylendioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2004. 97(2-3): p. 182-189.
20.Yamato, H., M. Ohwa, and W. Wernet, Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. Journal of Electroanalytical Chemistry, 1995. 397(1-2): p. 163-170.
21.Fabiano, S., et al., Poly 3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor. Materials Science and Engineering: C, 2002. 21(1-2): p. 61-67.
22. Gerhard Heywang, F.J., Poly(alkylenedioxythiophene) ew, very stable
conducting polymers. Advanced Materials, 1992. 4(2): p. 116-118.
23. Carlberg, J.C. and O. Inganas, Poly(3,4-ethylenedioxythiophene) as Electrode
Material in Electrochemical Capacitors. Journal of The Electrochemical Society,
1997. 144(4): p. L61-L64.
24. Granstrom, M., M. Berggren, and O. Inganas, Micrometer- and
Nanometer-Sized Polymeric Light-Emitting Diodes. Science, 1995. 267(5203): p.
1479-1481.
25. Elschner, A., et al., PEDT/PSS for efficient hole-injection in hybrid organic
light-emitting diodes. Synthetic Metals, 2000. 111-112: p. 139-143.
26. Saito, Y., et al., Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid
state dye sensitized solar cells. Synthetic Metals, 2002. 131(1-3): p. 185-187.
27. Saito, Y., et al., Solid state dye sensitized solar cells using in situ polymerized
PEDOTs as hole conductor. Electrochemistry Communications, 2004. 6(1): p.
71-74.
28. Liang, G. and T. Cui, Fabrication and characterization of
poly(3,4-ethylenedioxythiophene) field-effect transistors. Solid-State Electronics,
2004. 48(1): p. 87-89.
29. Groenendaal, L., et al., Poly(3,4-ethylenedioxythiophene) and Its Derivatives:
Past, Present, and Future. Advanced Materials, 2000. 12(7): p. 481-494.
30. Huang, X.-J. and Y.-K. Choi, Chemical sensors based on nanostructured
materials. Sensors and Actuators B: Chemical, 2007. 122(2): p. 659-671.
31. Nguyen Van, C. and K. Potje-Kamloth, Electrical and NOx gas sensing
properties of metallophthalocyanine-doped polypyrrole/silicon heterojunctions.
Thin Solid Films, 2001. 392(1): p. 113-121.
32. Xie, D., et al., Fabrication and characterization of polyaniline-based gas sensor
by ultra-thin film technology. Sensors and Actuators B: Chemical, 2002. 81(2-3):
p. 158-164.
33. Li, G., et al., Effect of thermal excitation on intermolecular charge transfer
efficiency in conducting polyaniline. Applied Physics Letters, 2004. 85(7): p.
1187-1189.
34. Elizalde-Torres, J., H. Hu, and A. Garc-Valenzuela, NO2-induced optical
absorbance changes in semiconductor polyaniline thin films. Sensors and
Actuators B: Chemical, 2004. 98(2-3): p. 218-226.
35. Ram, M.K., O. Yavuz, and M. Aldissi, NO2 gas sensing based on ordered
50
ultrathin films of conducting polymer and its nanocomposite. Synthetic Metals,
2005. 151(1): p. 77-84.
36. McGovern, S.T., G.M. Spinks, and G.G. Wallace, Micro-humidity sensors based
on a processable polyaniline blend. Sensors and Actuators B: Chemical, 2005.
107(2): p. 657-665.
37. Cho, J.-H., et al., Sensing behaviors of polypyrrole sensor under humidity
condition. Sensors and Actuators B: Chemical, 2005. 108(1-2): p. 389-392.
38. Prasad, G.K., et al., Ammonia sensing characteristics of thin film based on
polyelectrolyte templated polyaniline. Sensors and Actuators B: Chemical, 2005.
106(2): p. 626-631.
39. Tongpool, R. and S. Yoriya, Kinetics of nitrogen dioxide exposure in lead
phthalocyanine sensors. Thin Solid Films, 2005. 477(1-2): p. 148-152.
40. Ram, M.K., et al., CO gas sensing from ultrathin nano-composite conducting
polymer film. Sensors and Actuators B: Chemical, 2005. 106(2): p. 750-757.
41. Nohria, R., et al., Humidity sensor based on ultrathin polyaniline film deposited
using layer-by-layer nano-assembly. Sensors and Actuators B: Chemical, 2006.
114(1): p. 218-222.
42. Agbor, N.E., M.C. Petty, and A.P. Monkman, Polyaniline thin films for gas
sensing. Sensors and Actuators B: Chemical, 1995. 28(3): p. 173-179.
43. J gen, H., Cyclic Voltammetry Electrochemical Spectroscopyrdquo.
New Analytical Methods (25). Angewandte Chemie International Edition in
English, 1984. 23(11): p. 831-847.
44. Guyer, J.E., et al., Phase field modeling of electrochemistry. II. Kinetics.
Physical Review E, 2004. 69(2): p. 021604.
45. Yakshin, D.A.E.L., Eric Drs; Bijkerk, Dr. Frederik, Method for the production
of multi-layer systems. 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42793-
dc.description.abstract表面電漿共振(Surface Plasmon Resonance, SPR)是一種光學式的生物/化學感測器,具有良好的靈敏度、非接觸式、即時反應、及可平行檢測等優點,已在生物分子與化學的檢測元件上成為非常重要之檢定方式。本實驗藉電化學循環伏安法(Cyclic Voltammetry, CV)以不同氧化電位、掃瞄速度,和掃描圈數的聚二氧乙烯噻吩(PEDOT)沉積於SPR晶片上。藉由最佳化的校正參數來達到理想的表面電漿共振曲線與靈敏度,未來於一氧化氮檢測疾病診斷以及環境氣體監視應用。
在本研究中以電化學製備PEDOT為感測薄膜,相較於必須操作在高溫的金屬半導體或金屬複合物,它工作在常溫,具有高導電度、成本低廉和容易製造等優點,於一氧化氮感測實驗中,我們使用的晶片為氧化電位為0-0.88伏,掃瞄速度為200mV/s,掃描圈數為30圈的PEDOT晶片,在定角度43.2°下,依序通入100、50和25ppm的一氧化氮(NO)於常溫下,反射強度約為0.707、0.407和0.232,相關係數為0.96,以及實驗最低偵測極限約為8ppm;觀察不同氣體對晶片的反應,通入100、50和25ppm的二氧化氮(NO2),反射強度分別為0.55、0.32和0.17,由結果顯示PEDOT的晶片,對一氧化氮的強度變化比二氧化氮的反應大,且反應時間較快。本研究已成功完成在常溫下量測的光學式氣體感測器,與薄膜特性結合之表面電漿共振氣體感測器已具有快速、即時反應、常溫以及高靈敏度等良好特性,於未來可望成為一低功率之光學式表面電漿共振氣體感測裝置。
zh_TW
dc.description.abstractA study was conducted to use the cyclic voltammery (CV) method to deposit polymer on the SPR chips at different potential range, scanning cycles, and scanning rates. We proposed to design SPR sensing chip combined with the Poly(3,4-ethylenedioxythiophene) (PEDOT) thin film as a novel optical SPR gas sensor. Depending on the optimal design of PEDOT sensing film, it provided better SPR curve and sensitivity and be able to apply to application of nitric oxide (NO) detector, which is a critical index in asthma diagnostic, and environmental toxic gas sensor in the future.
In this study, we used the electrochemical system to prepare the PEDOT thin film. PEDOT as a sensing film which working at room temperature, as compared to the need to operate at a high temperature metal or metal compound semiconductor, and it have advantage of high conductivity, low-cost and easy to manufacture, etc... In the experiment the chip we use with sweeping voltage from 0v to 0.88v, scan rate 200mV/s for 30 cycles. At the degree of 43.2°, the reflectance intensity are 0.707, 0.407, and 0.232 at different concentration of 100, 50, 25ppm NO gas and 0.55, 0.32, and 0.17 for NO2 gas, the detecting limit of this thin-film sensing chip is about 8 ppm of NO gas at room temperature, correlation coefficient, R2, of NO gas concentration versus SPR angle shift is 0.96; the result shows the intensity for NO gas sensing is larger than NO2 gas and faster reaction time. In the experiments of this thesis, we have successfully combined the PEDOT thin film with the SPR sensor to serve as a nitric oxide gas detector, this novel type gas sensor provides several advantages such as fast, reversible, room temperature and high sensitivity and is able to serve as an optical surface plasmon resonance gas sensor.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:23:41Z (GMT). No. of bitstreams: 1
ntu-98-R96548045-1.pdf: 2831133 bytes, checksum: 3f85908670abb039b825532a74e7a849 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsACKNOWLEDGEMENT I
ABSTRACT II
中文摘要 IV
CONTENTS V
GRAPH INDEX VII
TABLE INDEX IX
CHAPTER 1 INTRODUCTION 1
1.1 RESEARCH BACKGROUND 1
1.2 PAPER REVIEW 2
1.3 CONTRIBUTION 4
1.4 STRUCTURE OF THIS THESIS 5
CHAPTER 2 THEORY ANALYSIS 7
2.1 SURFACE PLASMON RESONANCE 7
2.1.1 Surface Plasmon Wave (SPW) 7
2.1.2 Excitation of Surface Plasmon Resonance 12
2.1.3 SPR Sensing Mechanism 14
2.2 NITRIC OXIDE 15
2.3 POLY(3,4-ETHYLENEDIOXYTHIOPHENE) (PEDOT) THIN FILM 16
2.3.1 Introduction of PEDOT 16
2.3.2 SPR Curve with PEDOT Thin Film 18
2.4 THE GAS SENSING PRINCIPLES 19
2.5 THE PRINCIPLE OF ELECTROCHEMICAL SYSTEM 21
CHAPTER 3 EXPERIMENTAL SETUP 23
3.1 THE PREPARATION OF SPR GAS SENSING CHIP 23
3.1.1 The Substrate Cleaning Procedures 24
3.1.2 The E-Beam Evaporator And Metal Films Deposition 25
3.1.3 The Sputtering System and Sensing Film Deposition 30
3.2 THE ANALYSIS OF THIN FILMS 32
3.3 GAS SENSING SYSTEM SETUP 33
3.3.1 Ellipsometry, EP3 33
3.3.2 GWC SPR-Imager System 34
3.3.3 The Gas Sensing Components 35
3.4 NITRIC OXIDE GAS SENSING PROCEDURES 35
CHAPTER 4 RESULTS AND DISCUSSION 37
4.1 SEM ANALYSIS 38
4.2 THE OPTIMIZATION OF SPR CURVE WITH PEDOT THIN FILMS 40
4.3 THE GAS SENSING RESULTS 42
CHAPTER 5 CONCLUSION AND FUTURE WORK 47
REFERANCE 48
dc.language.isoen
dc.subject表面電漿共振zh_TW
dc.subject氣體感測器zh_TW
dc.subject一氧化氮zh_TW
dc.subjectPEDOTzh_TW
dc.subjectGas sensoren
dc.subjectSurface plasmon resonanceen
dc.subject4-ethylenedioxythiophene) (PEDOT)en
dc.subjectPoly(3en
dc.subjectNitric oxideen
dc.title表面電漿共振於常溫NO氣體感測晶片之研發zh_TW
dc.titleDevelopment of SPR-based chip for Room-temperature Nitric Oxide Gas Sensingen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭桂忠,何國川,陳一誠,林致廷
dc.subject.keyword氣體感測器,一氧化氮,PEDOT,表面電漿共振,zh_TW
dc.subject.keywordGas sensor,Nitric oxide,Poly(3,4-ethylenedioxythiophene) (PEDOT),Surface plasmon resonance,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved