請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42790完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林亮音 | |
| dc.contributor.author | Hsin-Yu Chen | en |
| dc.contributor.author | 陳欣瑜 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:23:35Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-24 | |
| dc.identifier.citation | 1.Dorine W. Swinkels, Mirian C.H. Janssen, Ju¨rgen Bergmans, et al. Hereditary Hemochromatosis: Genetic Complexity and New Diagnostic Approaches. Clinical Chemistry , 2006; 52: 950~968.
2.Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004; 306: 2090~2093. 3.Ohgami RS, Campagna DR, Greer EL, et al. Identification of a ferrireductase required for efficient transferring-dependent iron uptake in erythroid cells. Nat Genet, 2005; 37: 1264~1269. 4.Erwin H.J.M. Kemna, Harold Tjalsma, Hans L. Willems, and Dorine W. Swinkels. Hepcidin: from discovery to differential diagnosis. Haematologica, 2008; 93: 90~97. 5.Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet, 2003; 33: 21~22. 6.Nancy C. Andrews. Forging a field: the golden age of iron biology. Blood, 2008; 112: 219~230. 7.Maria Antonietta Melis, Milena Cau, Rita Congiu, et al. A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that suppresses hepcidin production, in familial iron deficiency anemia refractory to oral iron. Haematologica, 2008; 93: 1~7. 8.Ivana De Domenico, Diane M. Ward, and Jerry Kaplan. Hepcidin regulation: ironing out the details. J. Clin. Invest, 2007; 117: 1755~1758. 9.Carole Peyssonnaux, Annelies S. Zinkernagel,Reto A. Schuepbach,et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). The Journal of Clinical Investigation. 2007; 117:1926~1932. 10.Xin Du, Ellen She, Terri Gelbart, et al. The Serine Protease TMPRSS6 Is Required to Sense Iron Deficiency. Science, 2008; 320: 1088~1092. 11.Karin E Finberg, Matthew M Heeney, Dean R Campagna,et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nature Genetics, 2008; 40: 569~571. 12.Flavia Guillem, Sarah Lawson, Caroline Kannengiesser,et al. Two nonsense mutations in the TMPRSS6 gene in a patient with microcytic anemia and iron deficiency. Blood, 2008; 112: 2089~2091. 13.Kenneth P Batts. Iron overload syndromes and the liver. Modern Pathology,2007; 20: 31~39. 14.Hartikainen JM,Tuhkanen H, Kataja V, et al. Refinement of the 22q12-q13 breast cancer-associated region: evidence of TMPRSS6 as a candidate gene in an Eastern Finnish population. Clin Cancer Res, 2006; 12: 1454~1462. 15.Christian Parr, AndrewJ. Sanders, Gaynor Davies, et al. Matriptase-2 Inhibits Breast Tumor Growth and Invasion and Correlates with Favorable Prognosis for Breast Cancer Patients. Clin Cancer Res, 2007; 13: 3568~3576. 16.Andrew J. Ramsay, Janet C. Reid, Gloria Velasco, et al. The type II transmembrane serine protease Matriptase-2 – identification, structural features, enzymology, expression pattern and potential roles. Front Biosci, 2008; 13:569~579. 17.Roman Szabo, Thomas H. Bugge. Type II transmembrane serine proteases in development and disease. The International Journal of Biochemistry & Cell Biology, 2008; 40: 1297~1316. 18.Roman Szabo, Qingyu Wu, Robert B.Dickson, et al. Type II transmembrane serine proteases. Thrombosis and Haemostasis, 2003; 90: 185~193. 19.Laura Silvestri, Alessia Pagani and Clara Camaschella. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood, 2008; 111: 924~931. 20.Laura Silvestri, Alessia Pagani, Antonella Nai, et al. The Serine Protease Matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metabolism, 2008; 8: 1~10. 21.Daniel F. Wallace, Palle Pedersen, Jeannette L. Novel mutation in ferroportin1 is associated with autosomal dominant hemochromatosis. Blood, 2002; 100: 692~694. 22.Ernest Beutler, James C. Barton,Vincent J. Felitti,et al. Ferroportin 1 (SCL40A1) variant associated with iron overload in African-Americans. Blood Cells, Molecules, and Diseases, 2003; 31: 305~309. 23.Daniel F. Wallace, Jeannette L. Dixon, Grant A. Ramm, et al. A novel mutation in ferroportin implicated in iron overload. Journal of Hepatology, 2007; 46: 921~926. 24.Yone-Han Mah, Jia-Horng Kao, Chun-Jen Liu, et al. Prevalence and clinical implications of HFE gene mutations (C282Y and H63D) in patients with chronic hepatitis B and C in Taiwan. Liver International, 2005; 25: 214~219. 25.Tsung-Jung Lin, Chih-Lin Lin, Chaur-Shine Wang, et al. Prevalence of HFE mutations and relation to serum iron status in patients with chronic hepatitis C and patients with nonalcoholic fatty liver disease in Taiwan. World J Gastroenterol , 2005; 11: 3905~3908. 26.Pi-Jung Hsiao, Kun-Bow Tsai, Shyi-Jang Shin, et al. A novel mutation of transferrin receptor 2 in a Taiwanese woman with type 3 hemochromatosis. Journal of Hepatology, 2007; 47: 303~306. 27.Pauline L. Lee, Ernest Beutler, Sreenivas V. Rao,et al. Genetic abnormalities and juvenile hemochromatosis: mutations of the HJV gene encoding hemojuvelin. Blood, 2004; 103: 4669~4671. 28.George Papanikolaou, Mark E Samuels, Erwin H Ludwig, et al. Mutations in HFE2 cause iron overload in chromosome1q–linked juvenile hemochromatosis. Nature genetics, 2004; 36: 77~82. 29.Peter Vaupel, Friedrich Rallinowski, and Paul Okunieff. Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. Cancer Research, 1989; 49: 6449~6465 30.Michael Fiegl, Ismael Samudio, Karen Clise-Dwyer, et al. CXCR4 expression and biological activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood, 2009; 113: 1504~1512. 31.Hideo Kimura, Alessandro Weisz, Tsutomu Ogura, et al. Identification of HypoxiaInducible Factor1 (HIF1) Ancillary Sequence and Its Function in Vascular Endothelial Growth Factor Gene Induction by Hypoxia and Nitric Oxide. J Biol Chem. 2001; 276: 2292~2298. 32.Gloria Velasco, Santiago Cal, Victor Quesada, et al. Matriptase-2, a Membrane-bound Mosaic Serine Proteinase Predominantly Expressed in Human Liver and Showing Degrading Activity against Extracellular Matrix Proteins. J Biol Chem, 2002; 277: 37637~37646. 33.Ramsay, Andrew J., Reid, Janet C, et al. The type II transmembrane serine protease Matriptase-2 – identification, structural features, enzymology, expression pattern and potential roles. Front Biosci, 2008; 13: 569~579. 34.Ji-Won Lee, Seong-Hui Bae, Joo-Won Jeong, et al. Hypoxia-inducible factor (HIF-1): its protein stability and biological functions. Experimental and molecular Medicine, 2004; 36: 1~12. 35.Nathalie M. Mazure, Caroline Chauvet, Brigitte Bois-Joyeux, et al. Repression of α-Fetoprotein Gene Expression under Hypoxic Conditions in Human. Hepatoma Cells: Characterization of a Negative Hypoxia Response Element That Mediates Opposite Effects of Hypoxia Inducible Factor-1 and c-Myc. Cancer Research, 2002; 62: 1158~1165. 36.Niall Steven Kenneth and Sonia Rocha. Regulation of gene expression by hypoxia. Biochem. J., 2008; 414: 19~29. 37.Kaluz S, Kaluzová M, and Stanbridge EJ. Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. International journal of clinical chemistry, 2008; 395: 6~13. 38.Jan Krijt, Yuzo Fujikura, Luděk .efc, et al. Hepcidin downregulation by repeated bleeding is not mediated by soluble hemojuvelin. Physiol Res. 2009,[Epub ahead of print] 39.Tracey A Rouault. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature chemical biology, 2006; 2: 406~414. 40.R. Leipuviene and E. C. Theil. The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen. Cell. Mol. Life Sci., 2007; 64: 2945~2955. 41.Martina U. Muckenthaler, Bruno Galy, and MatthiasW. Hentze. Systemic Iron Homeostasis and the Iron-Responsive Element/Iron-Regulatory Protein (IRE/IRP) Regulatory Network. Annu. Rev. Nutr., 2008; 28:197~213. 42.Douglas M. Templeton, Ying Liu. Genetic regulation of cell function in response to iron overload or chelation. Biochimica et Biophysica Acta, 2003; 1619: 113~124. 43.Stephanie McMahon, Francine Grondin, Patrick P. McDonald, et al. Hypoxia-enhanced Expression of the Proprotein Convertase Furin Is Mediated by Hypoxia-inducible Factor-1. J Biol Chem, 2005; 280: 6561~6569. 44.Andrew T. McKie, Dalna Barrow, Gladys O. Latunde-Dada, et al. An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron. Science, 2001;291:1755~1579. 45.Maria Mastrogiannaki, Pavle Matak, Brian Keith, et al. HIF-2α, but not HIF-1α, promotes iron absorption in mice. The Journal of Clinical Investigation, 2009;119:1159~1166. 46.Mimi C.Sammarco, Scott Ditch, Ayan Banerjee, et al. Ferritin L and H subunits are differentially regulated on a post-transcriptional level. The journal of biological chemisty. 2008; 283:4578~4587. 47.Lorenza Tacchini, Laura Bianchi, Aldo Bernelli-Zazzera, et al. Transferrin Receptor Induction by Hypoxia: HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. The journal of biological chemistry, 1999; 274: 24142~24146. 48.Junji Kato, Masayoshi Kobune, Shunichi Ohkubo, et al. Iron/IRP-1-dependent regulation of mRNA expression for transferring receptor, DMT1 and ferritin during human erythroid differentiation. Experimental Hematology, 2007; 35:879~887. 49.Robert E. Fleming, Mary C. Migas, Christopher C. Holden, et al. Transferrin receptor 2: Continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proceedings of the National Academy of Sciences, 2000; 97: 2214~2219. 50.Glockner G., Scherer S., Schattevoy R.,et al. Largescale sequencing of two regions in human chromosome 7q22: analysis of 650 kb of genomic sequence around the EPO and CUTL1 loci reveals 17 genes. Genome Res., 1998; 8: 1060~1073. 51.Antonella Roetto, Filomena Daraio, Federica Alberti,et al. Hemochromatosis Due to Mutations in Transferrin Receptor 2. Blood Cells, Molecules, and Diseases, 2002; 29: 465~470. 52.Robert E. Fleming. Iron Sensing as a Partnership:HFE and Transferrin Receptor. Cell Metabolism, 2009; 9: 211~212. 53.Alessia Calzolari, Veronica Finisguerra , Isabella Oliviero. Regulation of transferrin receptor 2 in human cancer cell lines. Blood Cells, Molecules, and Diseases, 2009; 42: 5~13. 54.Chinmay K. Mukhopadhyay, Barsanjit Mazumder, and Paul L. Fox. Role of Hypoxia Inducible Factor-1 in Transcriptional Activation of Ceruloplasmin by Iron Deficiency. J Biol Chem, 2000; 275: 21048~21054. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42790 | - |
| dc.description.abstract | 鐵能幫助細胞電子傳遞、呼吸作用、氧氣輸送等正常生理功能,故鐵質對維持生物存活是必須物質。但因為鐵在體內沒有代謝管道,使得生物體對鐵的調控必須非常嚴密,防止鐵質含量不平衡所引起組織細胞損傷與疾病。近年來,研究人員陸續找到了與鐵相關的新蛋白群,這使得鐵在生物體內循環與調控更加清楚,也能以不同的角度看待鐵相關的機制與疾病。
Hepcidin是包含25個胺基酸的短鏈荷爾蒙,主要由肝臟製造,目前被認為是體內鐵質平衡的主要調控者。為了控制腸道細胞對於鐵質的吸收,以及巨噬細胞對於鐵質的釋放,hepcidin會降解細胞膜上的輸鐵蛋白ferroportin。目前已知有許多基因牽涉hepcidin表現調控,例如transferrin receptor 1 (TfR1)、transferrin receptor 2(TfR2)、hemojuvelin(HJV)、hemochromatosis (HFE)等。研究人員又發現難治性缺鐵性貧血患者與TMPRSS6變異相關,而找到TMPRSS6最重要的生理功能是藉由切割m-HJV,影響BMP/SMAD訊息傳遞來調節hepcidin的表現。 相較於國外對於HAMP(hepcidin gene)、HJV、FPN1(ferroportin gene)等基因變異有不少研究,台灣地區對於鐵相關的報告卻很少。鐵相關的疾病在於各種族之間發生的頻率與類型皆有不同,本研究針對台灣地區鐵質失衡患者,如鐵質缺乏的病患,以直接定序法直接定序分析TMPRSS6與其它相關基因的變異狀況。以47位缺鐵性貧血病患進行分析,在TMPRSS6重要的serine protease區域中,除了基因多型性變異外,並沒有發現有意義突變。此外,生物體含氧量與含鐵量為調控體內鐵平衡的兩大要素,本研究也針對TMPRSS6表現是否受到氧分壓改變所影響進行研究,TMPRSS6的啟動子區域上,確實包含數個HBS (Hypoxia-inducing factor binding sequence);將Hep G2與Huh 7細胞培養於氧氣21 %(正常氧)與3 %(低氧)環境下,相較之下,發現當氧濃度降低,且經時越長,TMPRSS6的mRNA表現量越高。另外,也發現HAMP的mRNA在低氧狀況下,表現量有明顯上升。在Hep G2細胞的低氧實驗中,發現ceruloplasmin隨低氧處理的時間越長,轉錄明顯增多;TfR1的轉錄則是先下降後上升。 | zh_TW |
| dc.description.abstract | Iron is essential for living organisms to survive, e.g. it is involved in electron transport and energy metabolism. There is no excretory pathway for iron, the regulation of iron homeostasis should be tightly controlled. To prevent unbalanced iron concentration causing cells and tissues damage, the systemic iron metabolism is regulated by iron absorption, utilization, and recycling. Recently, several novel studies of iron-related moleculars and genes make the association between iron homeostasis and diseases more clear. Hepcidin, a 25-amino acid peptide hormone, is mainly produced in the liver and is considered to be the principal regulator of systemic iron concentration. To limit iron absorption in enterocytes and control iron release from macrophages, hepcidin would bind to the iron-exporter protein ferroportin and trigger entrocytosis to degrade ferroportin. The hepcidin expression is regulated through erythropoietic activity pathway, iron store pathway, and inflammation pathway. Additionally, severl moleculars are also involved in, such as transferring receptor 1 (TFR1), transferring receptor 2 (TFR2), hemochromatosis (HFE), hemojuvelin (HJV), bone morphogenetic protein (BMP), etc. Recently, the TMPRSS6 mutation is revealed to be related to iron-refractory iron deficiency anemia, subsequent reporters showed that the main function of TMPRSS6 is to inhibit hepcidin activation by cleaving m-HJV. The mutation of these genes were reported somewhere, however, there are few reporters to discover the mutations of HAMP, HJV, FPN1 and TMPRSS6 in Taiwan. The aim of the present research is to study iron-related genes in 47 patients with iron deficiency, especially the TMPRSS6. We didn’t find any meaningful mutations in the functional serine protease domain, besides some SNPs. Further, the second aim is to know the effect of differ oxygenation concentrations. We measured several genes mRNA of Hep G2 and Huh7 cell lines which are incubated in normoxia or hypoxia conditions. Compared with normoxia, hypoxia can induce the expression of TMPRSS6 and HAMP mRNA in both cell lines. As expected, we found ceruloplasmin mRNA increased under hypoxia in Hep G2 cells. Furthermore, hypoxia decreased TfR1 mRNA at first and then increased its expression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:23:35Z (GMT). No. of bitstreams: 1 ntu-98-R96424002-1.pdf: 933519 bytes, checksum: 379770149b5a656b2f35bf4ef9fdab15 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員審定書
誌謝 i 目次 ii 縮寫表 iv 中文摘要 vi 英文摘要 viii 第一章 前言 1 第二章 研究目的 7 第三章 材料與方法 8 第四章 實驗結果 23 第五章 討論 28 第六章 結論 34 參考文獻 35 附圖 42 圖 45 附表 58 表 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鐵的體內平衡 | zh_TW |
| dc.subject | Hep G2細胞 | zh_TW |
| dc.subject | TMPRSS6 | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | 缺鐵性貧血 | zh_TW |
| dc.subject | TMPRSS6 | en |
| dc.subject | iron homeostasis | en |
| dc.subject | iron deficiency anemia | en |
| dc.subject | hypoxia | en |
| dc.subject | Hep G2 cells | en |
| dc.subject | hepcidin | en |
| dc.title | 鐵循環相關分子基因變異分析與其相關調控之探討 | zh_TW |
| dc.title | Study on the Iron-related Molecules in Iron Homeostasis:Mutation Spectrum and Low Oxygen Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑萍,呂健惠,顏瑞鴻 | |
| dc.subject.keyword | 鐵的體內平衡,缺鐵性貧血,缺氧,Hep G2細胞,TMPRSS6, | zh_TW |
| dc.subject.keyword | iron homeostasis,iron deficiency anemia,hypoxia,Hep G2 cells,hepcidin,TMPRSS6, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 911.64 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
