Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于天立(Tian-Li Yu)
dc.contributor.authorHau-Jiun Yangen
dc.contributor.author楊皓鈞zh_TW
dc.date.accessioned2021-06-15T01:23:19Z-
dc.date.available2009-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-24
dc.identifier.citation[1] S. Baluja and S. Davies. Combining multiple optimization runs with optimal
dependency trees. Technical report, 1997.
[2] T. Blickle and L. Thiele. A mathematical analysis of tournament selection. In
Proceedings of the Sixth International Conference on Genetic Algorithms, pages
9{16. Morgan Kaufmann, 1995.
[3] J. S. D. Bonet, C. L. Isbell, and P. Viola. Mimic: Finding optima by estimating
probability densities. In Advances in Neural Information Processing Systems,
page 424. The MIT Press, 1997.
[4] D. Chickering, D. Geiger, and D. Heckerman. Learning bayesian networks is
np-hard. Technical report, 1994.
[5] K. Deb and D. E. Goldbeg. Analyzing deception in trap functions. IlliGAL
Report No. 91009, University of Illinois at Urbana-Chmapaign, Illinois Genetic
Algorithms Laboratory, Urbana, IL, 1991.
[6] R. Etxeberria and P. Larra~naga. Global optimization using bayesian networks.
Second Symposium on Arti‾cial Intelligence (CIMAF-99), pages 332{339, 1999.
[7] D. E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem.
Genetic Algorithms and Simulated Annealing, pages 70{79, 1989.
[8] D. E. Goldberg. Real-coded genetic algorithms, virtual alphabets, and blocking.
Complex Systems, 5:139-167, 1990.
[9] D. E. Goldberg. The race, the hurdle, and the sweet spot: Lessons from genetic
algorithms for the automation of design innovation and creativity. IlliGAL
Report No. 98007, University of Illinois at Urbana-Chmapaign, Illinois Genetic
Algorithms Laboratory, Urbana, IL, 1998.
[10] D. E. Goldberg. The design of innovation: Lessons from and for competent
genetic algorithms. Norwell, MA, USA, 2002.
[11] D. E. Goldberg. The diesign of innovation: Lessons from and for competent
genetic algorithms. Kluwer Academic Publishers, 2002.
[12] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the
sizing of populations. Complex Systems, 6:336{342, 2001.
[13] D. E. Goldberg, K. Sastry, and T. Latoza. On the supply of building blocks.
Proceedings of the Genetic and Evolutionary Computation conference, pages
336{342, 2001.
[14] G. R. Harik. Linkage learning via probabilistic modeling in the ecga. Technical
report, 1999.
[15] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm.
In IEEE Transactions on Evolutionary Computation, pages 523{528, 1999.
[16] J. H. Holland. Adaptation in natural and arti‾cial systems. MIT Press, 1992.
[17] M. Hutter and M. ZaRalon. Distribution of mutual information from complete
and incomplete data. Computational Statistics & Data Analysis, 48(3):633{657,
2005. to appear.
[18] P. Larra~naga, J. A. Lozano, and eds. Estimation of distribution algorithms: A
new tool for evolutionary computation. Kluwer Academic Publishers, Boston,
MA, 2002.
[19] H. Muhlenbein and R. HAons. Scalable Optimization via Probabilistic Model-
ing: The Factorized Distribution Algorithm and the Minimum Relative Entropy
Principle. Springer Berlin / Heidelberg, 2006.
[20] H. Muhlenbein and D. Schlierkamp-voosen. Predictive models for the breeder
genetic algorithm: I. continuous parameter optimization. Evolutionary Com-
putation, 1:25{49, 1993.
[21] B. L. Miller, D. E. Goldberg, and D. E. Goldberg. Genetic algorithms, tourna-
ment selection, and the eRects of noise. Complex Systems, 9:193{212, 1995.
[22] H. Muhlenbein and G. Paass. From recombination of genes to the estimation of
distributions i. binary parameters. In PPSN IV: Proceedings of the 4th Inter-
national Conference on Parallel Problem Solving from Nature, pages 178{187,
London, UK, 1996. Springer-Verlag.
[23] M. Pelikan and D. E. Goldberg. Boa: The bayesian optimization algorithm.
pages 525{532. Morgan Kaufmann, 1999.
[24] G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the
3rd International Conference on Genetic Algorithms, pages 2{9, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.
[25] D. Thierens and D. E. Goldberg. Convergence models of genetic algorithm
selection schemes. In PPSN III: Proceedings of the International Conference on
Evolutionary Computation. The Third Conference on Parallel Problem Solving
from Nature, pages 119{129, London, UK, 1994. Springer-Verlag.
[26] M. Tsuji, M. Munetomo, and K. Akama. Modeling dependencies of loci with
string classi‾cation according to ‾tness diRerences. Genetic and Evolutionary
Computation { GECCO 2004, pages 246{257, 2004.
[27] T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-P. Chen. Genetic algorithm
design inspired by organizational theory: Pilot study of a dependency structure matrix driven genetic algorithm. Proceedings of Arti‾cial Neural Networks in
Engineering 2003, 2003.
[28] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. Population sizing for
entropy-based model building in discrete estimation of distribution algorithms.
In GECCO '07: Proceedings of the 9th annual conference on Genetic and evo-
lutionary computation, pages 601{608, New York, NY, USA, 2007. ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42783-
dc.description.abstract本論文提出了一個分佈估計演算法(estimation of distribution algorithms)的模型建構收斂時間的模型。該模型利用了之前分佈估計演算法的人口規模調整(population sizing)的結果。我們給了一個遞迴關係式用來表示每一個世代被認出的積木(building block)的比例,而且我們用這個遞迴關係式來推導出收斂時間的上限跟下限。因為在每個世代的連接認出機率(linkage identification rate)在改變,所以收斂時間的上限很難找出一個封閉形式(closed form),另外藉由假設等位基因的(allelic)快速收斂來推導出連接認出機率。因此,我們用了一些算術上的假設來使的上限成立。我們另外也假設了固定的連接認出機率來推導出下限。最後我們可以發現收斂時間可以被ln m和O(m)限制住,其中$m$是表示積木的數目而且m是跟問題的大小成正比。在延伸式精簡基因演算法(ECGA)跟相依關係結構矩陣基因演算法(DSMGA)的實驗結果可以驗證本論文提出的模型。最後,我們藉由觀察基因演算法的收斂時間來試圖解釋如何得到一個更嚴格的限制。zh_TW
dc.description.abstractThis thesis proposes a convergence time model for model building in estimation of distribution algorithms (EDAs). The model utilizes the result of population sizing for EDAs in previous work. We give a recurrence relation to express the proportion of identified building blocks in each generation and use the recurrence function to model upper and lower bounds. The upper bound fails to yield a closed form solution due to the varying linkage identification rate, and the linkage identification rate is derived by assuming rapid allelic convergence. Therefore, we use some arithmetic approximations to keep the upper bound hold. We also derive lower bounds by assuming fixed identification rate. Specifically, The linkage model convergence time is bounded by O(ln m) and O(m), where m is the number of building blocks and it is proportional to problem size. Empirically, experiment results on ECGA and DSMGA agree with the proposed bounds. Finally, we give an insight for a tighter bound by observing the allelic convergence time.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:23:19Z (GMT). No. of bitstreams: 1
ntu-98-R96921057-1.pdf: 510260 bytes, checksum: e8ffe17b4b4f4e4e1a0ff9eec77a9746 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 ii
ABSTRACT iii
List of Figures iii
List of Abbreviation iv
1 Introduction 1
2 Simple GA & GA theory 3
2.1 Introduction to simple GAs . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Building block, decomposable problem and deceptive problem . . . . 6
2.3 Population sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Race between innovation time and takeover time . . . . . . . . . . . . 10
2.5 Convergence time model . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 An Introduction to EDAs 13
3.1 Estimation of distribution algorithms . . . . . . . . . . . . . . . . . . 13
3.2 From cGA to ECGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 DSMGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Population sizing for EDAs . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ii
4 Linkage-Identi‾cation Abilities for EDAs 21
4.1 Starting linkage-identi‾cation probability . . . . . . . . . . . . . . . . 21
4.2 Modeling linkage-identi‾cation probability . . . . . . . . . . . . . . . 24
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Convergence Time for Linkage Model 28
5.1 Recurrence relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Modeling the upper bound . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Modeling the lower bound . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Experiments and discussions . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Insight for tighter bounds . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 Summary and Conclusions 40
dc.language.isoen
dc.subject估計分配演算法zh_TW
dc.subject模型建構zh_TW
dc.subject連接學習zh_TW
dc.subject基因演算法zh_TW
dc.subject收斂時間zh_TW
dc.subjectEstimation of Distribution Algorithmsen
dc.subjectGenetic Algorithmsen
dc.subjectConvergence Timeen
dc.subjectLinkage Learningen
dc.subjectModel Buildingen
dc.title估計分配演算法的模型建構收斂時間zh_TW
dc.titleConvergence Time for Linkage Model Building in Estimation of Distribution Algorithmsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭士康,陳穎平
dc.subject.keyword估計分配演算法,模型建構,連接學習,收斂時間,基因演算法,zh_TW
dc.subject.keywordEstimation of Distribution Algorithms,Model Building,Linkage Learning,Convergence Time,Genetic Algorithms,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
498.3 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved