Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42774
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟(Chung-Chih Wu)
dc.contributor.authorTung-Huei Keen
dc.contributor.author柯統輝zh_TW
dc.date.accessioned2021-06-15T01:22:55Z-
dc.date.available2014-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citation[1] M. Pope, Electronci Process in Organic Crystals and Polymers, Oxford University Press, Oxford 1999.
[2] http://www.xerox.com.
[3] A. Tsumura, H. Koezuka, T. Ando, Applied Physics Letters 1986, 49, 1210.
[4] M. Pope, P. Magnante, H. P. Kallmann, Journal of Chemical Physics 1963, 38, 2042.
[5] C. W. Tang, S. A. Vanslyke, Applied Physics Letters 1987, 51, 913.
[6] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2001, 90, 5048.
[7] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett 2001, 79, 2082.
[8] N. Tessler, G. J. Denton, R. H. Friend, Nature 1996, 382, 695.
[9] C. W. Tang, Applied Physics Letters 1986, 48, 183.
[10] J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, J. Schrofel, Sensors and Actuators B-Chemical 2001, 76, 8.
[11] H. P. Ho, S. Y. Wu, M. Yang, A. C. Cheung, Sensors and Actuators B-Chemical 2001, 80, 89.
[12] M. A. Baldo, O. r. D. F, Y. You, A. Shoustikov, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[13] G. F. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, Applied Physics Letters 2004, 85, 3911.
[14] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Applied Physics Letters 2001, 79, 156.
[1] J. C. deMello, H. F. Wittmann, R. H. Friend, Advanced Materials 1997, 9, 230.
[2] S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley & Sons, Inc., 2002.
[3] O. G. Reid, K. Munechika, D. S. Ginger, Nano Letters 2008, 8, 1602.
[4] S. Schols, L. Van Willigenburg, R. Muller, D. Bode, M. Debucquoy, S. De Jonge, J. Genoe, P. Heremans, S. Lu, A. Facchetti, Applied Physics Letters 2008, 93.
[5] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194.
[6] H. Houili, J. D. Picon, L. Zuppiroli, M. N. Bussac, Journal of Applied Physics 2006, 100.
[7] J. R. Haynes, W. Shockley, Physical Review 1951, 81, 835.
[8] R. G. Kepler, Physical Review 1960, 119, 1226.
[9] O. H. Leblanc, Journal of Chemical Physics 1960, 33, 626.
[10] N. R. Mirchina, A. Peled, International Journal of Electronics 2000, 87, 1421.
[11] R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, V. Podzorov, Physica Status Solidi a-Applied Research 2004, 201, 1302.
[12] V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Physical Review Letters 2004, 93.
[13] J. H. Kang, D. da Silva, J. L. Bredas, X. Y. Zhu, Applied Physics Letters 2005, 86.
[14] J. Mort, G. Pfister, S. Grammatica, Solid State Communications 1976, 18, 693.
[15] G. Pfister, Physical Review B 1977, 16, 3676.
[16] J. Frenkel, Physical Review 1938, 54, 647.
[17] H. H. Poole, Philosophical Magazine 1921, 42, 488.
[18] I. T. Johansen, Journal of Applied Physics 1966, 37, 499.
[19] A. M. Okoniewski, C. Tannous, A. Yelon, Physical Review B 1987, 35, 6454.
[20] P. C. Arnett, N. Klein, Journal of Applied Physics 1975, 46, 1399.
[21] P. A. Martin, B. G. Streetman, K. Hess, Journal of Applied Physics 1981, 52, 7409.
[22] L. B. Schein, A. Peled, D. Glatz, Journal of Applied Physics 1989, 66, 686.
[23] H. Bassler, Physica Status Solidi B-Basic Research 1981, 107, 9.
[24] R. A. Marcus, Journal of Chemical Physics 1956, 24, 966.
[25] R. A. Marcus, N. Sutin, Biochimica Et Biophysica Acta 1985, 811, 265.
[26] C. C. Wu, W. G. Liu, W. Y. Hung, T. L. Liu, Y. T. Lin, H. W. Lin, K. T. Wong, Y. Y. Chien, R. T. Chen, T. H. Hung, T. C. Chao, Y. M. Chen, Applied Physics Letters 2005, 87.
[1] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S.
Kirchmeyer, W. Weber, Advanced Materials 2003, 15, 917.
[2] K. Kaneto, K. Takayama, W. Takashima, T. Endo, M. Rikukawa, Japanese
Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers
2002, 41, 675.
[3] L. Y. Chen, W. Y. Hung, Y. T. Lin, C. C. Wu, T. C. Chao, T. H. Hung, K. T.
Wong, Applied Physics Letters 2005, 87.
[4] L. Y. Chen, T. H. Ke, C. C. Wu, T. C. Chao, K. T. Wong, C. C. Chang, Applied
Physics Letters 2007, 91.
[5] W. Y. Hung, T. H. Ke, Y. T. Lin, C. C. Wu, T. H. Hung, T. C. Chao, K. T. Wong,
C. I. Wu, Applied Physics Letters 2006, 88.
[6] C. C. Wu, T. L. Liu, W. Y. Hung, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen,
Y. Y. Chien, Journal of the American Chemical Society 2003, 125, 3710.
[7] C. C. Wu, W. G. Liu, W. Y. Hung, T. L. Liu, Y. T. Lin, H. W. Lin, K. T. Wong, Y.
Y. Chien, R. T. Chen, T. H. Hung, T. C. Chao, Y. M. Chen, Applied Physics
Letters 2005, 87.
[8] V. I. Arkhipov, H. Bassler, Philosophical Magazine B-Physics of Condensed
Matter Statistical Mechanics Electronic Optical and Magnetic Properties 1993,
68, 425.
[9] H. Bassler, Physica Status Solidi B-Basic Research 1993, 175, 15.
[10] P. M. Borsenberger, L. T. Pautmeier, H. Bassler, Physical Review B 1992, 46,
12145.
[11] J. S. Facci, M. Stolka, Philosophical Magazine B-Physics of Condensed Matter
Statistical Mechanics Electronic Optical and Magnetic Properties 1986, 54, 1.
[12] P. M. Borsenberger, Molecular Crystals and Liquid Crystals 1993, 230, 167.
[13] P. M. Borsenberger, E. H. Magin, M. Vanderauweraer, F. C. Deschryver, Physica
Status Solidi a-Applied Research 1993, 140, 9.
[14] P. M. Borsenberger, R. Richert, H. Bassler, Physical Review B 1993, 47, 4289.
[15] B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee, W. A. Gambling, Applied
Physics Letters 1999, 75, 4010.
[16] W. D. Gill, K. K. Kanazawa, Journal of Applied Physics 1972, 43, 529.
[17] J. Salbeck, N. Yu, J. Bauer, F. Weissortel, H. Bestgen, Synthetic Metals 1997, 91,
209.
[18] C. C. Wu, T. L. Liu, Y. T. Lin, W. Y. Hung, T. H. Ke, K. T. Wong, T. C. Chao,
Applied Physics Letters 2004, 85, 1172.
[19] T. Nagase, H. Naito, Journal of Applied Physics 2000, 88, 252.
[1] W. Graupner, G. Leising, G. Lanzani, M. Nisoli, S. DeSilvestri, U. Scherf,
Physical Review Letters 1996, 76, 847.
[2] W. Graupner, J. Partee, J. Shinar, G. Leising, U. Scherf, Physical Review Letters
1996, 77, 2033.
[3] A. C. Grimsdale, P. Leclere, R. Lazzaroni, J. D. Mackenzie, C. Murphy, S.
Setayesh, C. Silva, R. H. Friend, K. Müllen, Advanced Functional Materials
2002, 12, 729.
[4] P. E. Keivanidis, J. Jacob, L. Oldridge, P. Sonar, B. Carbonnier, S. Baluschev, A.
C. Grimsdale, K. Mullen, G. Wegner, Chemphyschem 2005, 6, 1650.
[5] F. Laquai, M. R. Ribas, A. Petrozza, J. Jacob, L. Akcelrud, K. Müllen, R. H.
Friend, G. Wegner, Advanced Functional Materials 2007, 17, 3231.
[6] T. Pauck, R. Hennig, M. Perner, U. Lemmer, U. Siegner, R. F. Mahrt, U. Scherf,
K. Müllen, H. Bassler, E. O. Gobel, Chemical Physics Letters 1995, 244, 171.
[7] C. Silva, D. M. Russell, M. A. Stevens, J. D. Mackenzie, S. Setayesh, K. Müllen,
R. H. Friend, Chemical Physics Letters 2000, 319, 494.
[8] S. Tasch, A. Niko, G. Leising, U. Scherf, Applied Physics Letters 1996, 68, 1090.
[9] G. Heimel, M. Daghofer, J. Gierschner, E. J. W. List, A. C. Grimsdale, K.
Müllen, D. Beljonne, J. L. Bredas, E. Zojer, Journal of Chemical Physics 2005,
122.
[10] M. M. Elmahdy, G. Floudas, L. Oldridge, A. C. Grimsdale, K. Müllen,
ChemPhysChem 2006, 7, 1431.
[11] Q. D. Zheng, S. K. Gupta, G. S. He, L. S. Tan, P. A. N. Prasad, Advanced
Functional Materials 2008, 18, 2770.
[12] D. Hertel, H. Bassler, U. Scherf, H. H. Horhold, Journal of Chemical Physics
1999, 110, 9214.
[13] D. Hertel, U. Scherf, H. Bassler, Advanced Materials 1998, 10, 1119.
[14] C. Py, T. C. Gorjanc, T. Hadizad, J. Zhang, Z. Y. Wang, Journal of Vacuum
Science & Technology A 2006, 24, 654.
[15] J. P. M. Serbena, I. A. Hummelgen, T. Hadizad, Z. Y. Wang, Small 2006, 2, 372.
[16] K. T. Wong, L. C. Chi, S. C. Huang, Y. L. Liao, Y. H. Liu, Y. Wang, Organic
Letters 2006, 8, 5029.
[17] J. H. Schon, C. Kloc, D. Fichou, B. Batlogg, Physical Review B 2002, 66.
[18] J. H. Schon, C. Kloc, B. Batlogg, Synthetic Metals 2000, 115, 75.
[19] C. C. Wu, T. L. Liu, Y. T. Lin, W. Y. Hung, T. H. Ke, K. T. Wong, T. C. Chao,
Applied Physics Letters 2004, 85, 1172.
[20] R. A. Marcus, Reviews of Modern Physics 1993, 65, 599.
[1]. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Phys. Rev. Lett. 2003, 91, 157406.
[2]. J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, H. Sirringhaus, Adv. Mater.
2006, 18, 2708.
[3]. T. Oyamada, H. Sasabe, Y. Oku, N. Shimoji, C. Adachi, Appl. Phys. Lett. 2006, 88, 093514.
[4]. J. Zaumseil, R. J. Kline, H. Sirringhaus, Appl. Phys. Lett. 2008, 92, 073304.
[5]. T. Sakanoue, M. Yahiro, C. Adachi, J. H. Burroughes, Y. Oku, N. Shimoji, T.
Takahashi, A. Toshimitsu, Appl. Phys. Lett. 2008, 92, 066601.
[6]. E. B. Namdas, P. Ledochowitsch, J. D. Yuen, D. Moses, A. J. Heeger, Appl. Phys.
Lett. 2008, 92, 183304.
[7]. T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H.
Sasabe, C. Adachi, J. Appl. Phys. 2005, 98, 074506.
[8]. R. Gehlhaar, M. Yahiro, C. Adachi, J. Appl. Phys. 2008, 104.
[9]. M. Y. Lai, C. H. Chen, W. S. Huang, J. T. Lin, T. H. Ke, L. Y. Chen, M. H. Tsai,
C. C. Wu, Angew. Chem. Int. Ed. 2008, 47, 581.
[10]. J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, P. Di Marco, Appl. Phys. Lett. 2000, 76, 2352.
[11]. L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R.
H. Friend, Nature 2005, 434, 194.
[12]. J. N. Haddock, X. H. Zhang, S. J. Zheng, Q. Zhang, S. R. Marder, B. Kippelen,
Org. El. 2006, 7, 45.
[13]. Gupta, N. Jeon, S. Yoo, Org. El. 2008, 9, 1026.
[14]. Santato, I. Manunza, A. Bonfiglio, F. Cicoira, P. Cosseddu, R. Zamboni, M.
Muccini, Appl. Phys. Lett. 2005, 86.
[15]. B. Namdas, J. S. Swensen, P. Ledochowitsch, J. D. Yuen, D. Moses, A. J.
Heeger, Adv. Mater. 2008, 20, 1321.
[16]. J. Zaumseil, C. R. McNeill, M. Bird, D. L. Smith, P. P. Ruden, M. Roberts, M. J.
McKiernan, R. H. Friend, H. Sirringhaus, J. Appl. Phys. 2008, 103, 064517.
[17]. T. Yamao, Y. Shimizu, K. Terasaki, S. Hotta, Adv. Mater. 2008, 20, 4109.
[18]. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara,
S. Tobita, C. Adachi, Advanced Functional Materials 2007, 17, 2328.
[19]. T. Oyamada, C. H. Chang, T. C. Chao, F. C. Fang, C. C. Wu, K. T. Wong, H.
Sasabe, C. Adachi, Journal of Physical Chemistry C 2007, 111, 108.
[20]. H. Benisty, H. De Neve, C. Weisbuch, Ieee Journal of Quantum Electronics 1998, 34, 1612.
[21]. N. J. Turro, Modern Molecular Photochemistry, Mill Valley, 1991.
[22]. D. Z. Garbuzov, V. Bulovic, P. E. Burrows, S. R. Forrest, Chemical Physics Letters, 1996, 249, 433.
[23]. S. Y. Yang, K. Shin, C. E. Park, Advanced Functional Materials 2005, 15, 1806.
[24]. Da Como, M. A. Loi, F. Dinelli, M. Murgia, F. Biscarini, R. Zamboni, M.
Muccini, Synthetic Metals 2005, 155, 287.
[25]. E. Da Como, M. A. Loi, M. Murgia, R. Zamboni, M. Muccini, Journal of the
American Chemical Society 2006, 128, 4277.
[26]. Dinelli, J. F. Moulin, M. A. Loi, E. Da Como, M. Massi, M. Murgia, M.
Muccini, F. Biscarini, J. Wie, P. Kingshott, Journal of Physical Chemistry B
2006, 110, 258.
[27]. M. A. Loi, E. Da Como, F. Dinelli, M. Murgia, R. Zamboni, F. Biscarini, M.
Muccini, Nature Materials 2005, 4, 81.
[28]. L. Torsi, A. Dodabalapur, H. E. Katz, J. Appl. Phys. 1995, 78, 1088.
[29]. M. L. Chabinyc, J. P. Lu, R. A. Street, Y. L. Wu, P. Liu, B. S. Ong, J. Appl. Phys.
2004, 96, 2063.
[30]. T. H. Ke, R. Gehlhaar, C. H. Chen, J. T. Lin, C. C. Wu, C. Adachi, Appl. Phys. Lett. 2009, 94, 153307.
[31]. S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley & Sons, Inc., 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42774-
dc.description.abstract近年來有機發光元件在平面顯示器與照明應用上漸受矚目。然而為了實現高品質的全彩顯示器與照明元件,高效率三原色發光元件是不可或缺的,其中紅光與綠光之有機發光元件逐漸成熟,至於藍光元件則尚待改善,因此寬能隙有機半導體的相關研究便十分重要。
在影響發光元件效率的各種材料特性中,載子傳輸特性與光物理特性對於元件特性有很大的影響。而對於有機半導體材料而言,分子結構的微小差異可能會對材料特性造成巨大的影響。故在本論文中,透過研究不同系列之寬能隙有機分子之光物理與載子傳輸特性,藉由分子構造的探討,希望找出能提升有機寬能隙發光元件效率的分子設計。
本論文中先研究在寡聚物芴化合物(oligofluorene)的九號碳上,不同取代基對載子傳輸特性的影響。接著探討主鏈長度對於茚芴(indenofluorene)化合物之光物理以及載子傳輸特性的影響。本論文次一主題研究了在C3與C6接上不同取代基之咔唑化合物(carbazole)的光物理以及載子傳輸特性,並探討了此載子傳輸特性對元件效率的影響。接著本論文探討了不同架接位置對於寡聚物咔唑化合物的光物理以及載子傳輸特性影響,並發現某些特定寡聚物咔唑化合物具有雙極性載子傳輸特性。本論文最後藉由具有雙極性載子傳輸特性之芴衍生物,實現了藍光與可調色彩之有機發光場效電晶體。
zh_TW
dc.description.abstractOrganic light emitting devices (OLEDs) have attracted wide interest for display and lighting applications in the past decade. Thus high-efficiency OLEDs with three primary color, red, green, and blue, are important for high quality display and lighting applications. Highly efficient red and green OLEDs have become readily available nowadays. However, efficient and stable blue emitters are still highly desired. Therefore the researches of wide-gap organic semiconductors for further developments are very important.
Among the characteristics of organic materials, charge-transport and photophysical properties have significant effects on the device performances. In organic semiconductors, slight modification of the molecule configuration could alter the material properties significantly. Therefore, the relation between the molecule configuration and the corresponding charge-transport and photophysical properties is of high interest.
In the thesis, we first investigate a series of oligofluorenes with different side-chain substituents on C9 to depict the effects of the side-chain substituents on the charge-transport properties. Subsequently, the charge-transport and photophysical properties of a series of indenofluorenes with different main-chain length are investigated. In addition, we investigate the photophysical and charge-transport properties of a series of triphenylsilyl/trityl-substituted carbazoles. The obtained information is used to explain the corresponding device performance. Further, the photophysical and charge-transport properties of a series of oligocarbazoles with different linking topologies are investigated. Ambipolar charge-transport properties are observed for the first time in some pure oligocarbazole systems. In the end, two fluorene-based materials are employed as the active layers in organic light-emitting transistors (OLETs) to demonstrate blue and color-controllable OLETs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:22:55Z (GMT). No. of bitstreams: 1
ntu-98-F92941005-1.pdf: 4585351 bytes, checksum: 90b2c8bf51d778f8951e48d9ca98dffe (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction
1.1 Operation mechanisms of various organic optoelectronics and their material requirements - 1 -
1.2 Motivation of investigating wide-gap organic semiconductors - 4 -
1.3 Thesis Organization - 6 -
Chapter 2 Experimental and Analysis Methods
2.1 Introduction - 10 -
2.2 Material preparation and characterization - 11 -
2.3 Photophysical characterizations. - 12 -
2.4 Characterization of charge-transport properties by time-of-flight (TOF) methods. - 12 -
2.4.1 Introduction - 12 -
2.4.2 Principles of the time-of-flight mobility measurement - 15 -
2.4.3 Preparation of TOF samples - 19 -
2.4.4 Models of charge-transport in organic semiconductors - 20 -
2.4.4.1 Introduction - 20 -
2.4.4.2 Bässler formalism - 23 -
2.4.4.3 Marcus electron transfer theory - 25 -
Reference - 27 -

Chapter 3 Charge-Transport Properties of p-Tolyl Substituted Oligo(fluorene)s
3.1 Introduction - 35 -
3.2 Material properties - 38 -
3.3 Results and discussions - 39 -
3.3.1 TOF Results in T3 amorphous films - 39 -
3.3.2 TOF Results in 4D amorphous films - 40 -
3.3.3 Discussions - 42 -
3.4 Summary - 44 -
Reference - 45 -
Chapter 4 Photophysical and Charge-Transport Properties of p-Tolyl Substituted Indenofluorenes
4.1 Introduction - 62 -
4.2 Results and discussions - 64 -
4.2.1 Material properties of oligo(indenofluorene)s - 64 -
4.2.2 Photophysical properties of oligo(indenofluorene)s - 64 -
4.2.3 Charge-transport properties of oligo(indenofluorene)s - 67 -
4.2.3.1 InF3 - 67 -
4.2.3.2 InF4 - 67 -
4.2.3.3 InF5 - 68 -
4.2.3.4 Discussions - 70 -
Reference - 72 -
Chapter 5 Photophysical and Charge-Transport Properties of Carbazole-based Materials
5.1 Introduction - 86 -
5.2 Triphenylsilyl/Trityl-substituted Carbazoles. - 88 -
5.2.1 Introduction - 88 -
5.2.2 Material and photophysical properties - 90 -
5.2.3 Charge-transport properties - 91 -
5.2.4 Discussions - 93 -
5.3 Carbazole-based dimers and trimers with different linking topologies - 95 -
5.3.1 Introduction - 95 -
5.3.2 Photophysical properties of the oligocarbazoles - 97 -
5.3.2.1 39BCz - 97 -
5.3.2.2 39TCz - 97 -
5.3.2.3 33BCz - 98 -
5.3.2.4 33TCz - 98 -
5.3.2.5 27BCz - 99 -
5.3.2.6 29BCzA - 99 -
5.3.2.7 29BCz - 100 -
5.3.2.8 29TCz - 100 -
5.3.2.9 Comparison of photophysical properties - 101 -
5.3.3 Charge-transport properties of the oligocarbazoles - 104 -
5.3.3.1 39BCz - 104 -
5.3.3.2 39TCz - 104 -
5.3.3.3 33BCz - 105 -
5.3.3.4 33TCz - 105 -
5.3.3.5 27BCz - 105 -
5.3.3.6 29BCzA - 106 -
5.3.3.7 29BCz - 106 -
5.3.3.8 29TCz - 107 -
5.3.3.9 Comparison of charge-transport properties. - 107 -
5.3.4 Summary - 109 -
Reference - 110 -
Chapter 6 Applications of Wide-Gap Charge-Transport and Emitting Materials in Organic Light Emitting Transistors
6.1 Introduction - 149 -
6.2 Experimental methods - 151 -
6.3 Blue light emitting transistors - 153 -
6.4 Color-controllable light-emitting transistors - 157 -
6.5 Summary - 162 -
References - 163 -
Chapter 7 Summary
dc.language.isoen
dc.subject光物理zh_TW
dc.subject有機半導體zh_TW
dc.subject載子飄移率zh_TW
dc.subjectmobilityen
dc.subjectphotophysicalen
dc.subjectorganic semiconductoren
dc.title寬能隙有機半導體之載子傳輸與光物理特性研究與其元件應用zh_TW
dc.titleInvestigations of Charge-Transport and Photophysical Properties of Wide-Gap Organic Semiconducting Materials and Their Device Applicationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee汪根欉,林建村,陳介偉,謝信弘
dc.subject.keyword有機半導體,載子飄移率,光物理,zh_TW
dc.subject.keywordorganic semiconductor,mobility,photophysical,en
dc.relation.page177
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved