請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42765
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王兆麟 | |
dc.contributor.author | Wei-Cheng Huang | en |
dc.contributor.author | 黃偉程 | zh_TW |
dc.date.accessioned | 2021-06-15T01:22:31Z | - |
dc.date.available | 2009-07-24 | |
dc.date.copyright | 2009-07-24 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-24 | |
dc.identifier.citation | 1. Gages for General Stress Measurement, KFG Gages. Kyowa,ltd.
2. How to Form Strain-gage Bridges. Kyowa.ltd. 3. Cusano A. An optoelectronic sensor for cure monitoring in thermoset-based composites. 2000. 4. Cusano A, Salvarezza P, Breglio G, et al. Integrated fiber optic sensing system for in-situ characterization of the curing process of thermoset-based composites. In Eric U, Daniele I eds: SPIE, 2001:275-84. 5. Dath R, Sirkett DM, Gheduzzi S, et al. Intradiscal pressure changes with dynamic pedicle screw systems. J Spinal Disord Tech 2008;21:241-6. 6. Dennison CR, Wild PM, Byrnes PW, et al. Ex vivo measurement of lumbar intervertebral disc pressure using fibre-Bragg gratings. J Biomech 2008;41:221-5. 7. Dennison CR, Wild PM, Dvorak MF, et al. Validation of a novel minimally invasive intervertebral disc pressure sensor utilizing in-fiber Bragg gratings in a porcine model: an ex vivo study. Spine 2008;33:E589-94. 8. Dolan P, Adams MA. Recent advances in lumbar spinal mechanics and their significance for modelling. Clin Biomech (Bristol, Avon) 2001;16 Suppl 1:S8-S16. 9. Ekstrom L, Holm S, Holm AK, et al. In vivo porcine intradiscal pressure as a function of external loading. J Spinal Disord Tech 2004;17:312-6. 10. Guehring T, Unglaub F, Lorenz H, et al. Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. Eur Spine J 2006;15:597-604. 11. Heuer F, Schmidt H, Claes L, et al. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J Biomech 2007;40:795-803. 12. Hoejer S, Krantz M, Ekstroem L, et al. Microstructure-based fiber optic pressure sensor for measurements in lumbar intervertebral discs. In Francesco B, Nathan IC, Martin F, et al. eds: SPIE, 1999:115-22. 13. Kettler A, Liakos L, Haegele B, et al. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J 2007;16:2186-92. 14. Liu YM, Ganesh C, Steele JPH, et al. Fiber Optic Sensor Development for Real-Time In-Situ Epoxy Cure Monitoring. Journal of Composite Materials 1997;31:87-102. 15. McNally DS, Adams MA. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 1992;17:66-73. 16. McNally DS, Adams MA, Goodship AE. Development and validation of a new transducer for intradiscal pressure measurement. J Biomed Eng 1992;14:495-8. 17. Merriam WF, Quinnell RC, Stockdale HR, et al. The effect of postural changes on the inferred pressures within the nucleus pulposus during lumbar discography. Spine 1984;9:405-8. 18. Naylor A, Smare DL. Fluid content of the nucleus pulposus as a factor in the disk syndrome; preliminary report. Br Med J 1953;2:975-6. 19. Nesson S. Miniature Fiber Optic Pressure Sensors for Intervertebral Disc Pressure Measurements in Rodents, 2007. 20. Nesson S, Yu M, Hsieh AH. A miniature fiber optic pressure sensor for intradiscal pressure measurements of rodents. In Vijay KV ed: SPIE, 2007:65280P. 21. Nesson S, Yu M, Zhang X, et al. Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements. Journal of Biomedical Optics 2008;13:044040. 22. Polga DJ, Beaubien BP, Kallemeier PM, et al. Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine 2004;29:1320-4. 23. Richard Syms JC. Optical guided waves and devicesed, 1993. 24. Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999;24:2468-74. 25. Takahashi K, Inoue S, Takada S, et al. Experimental study on chemonucleolysis. With special reference to the change of intradiscal pressure. Spine 1986;11:617-20. 26. Wang JL, Tsai YC, Wang YH. The leakage pathway and effect of needle gauge on degree of disc injury post anular puncture: a comparative study using aged human and adolescent porcine discs. Spine 2007;32:1809-15. 27. Wilke HJ, Drumm J, Haussler K, et al. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 2008;17:1049-56. 28. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755-62. 29. Wilke HJ, Schmidt H, Werner K, et al. Biomechanical evaluation of a new total posterior-element replacement system. Spine 2006;31:2790-6; discussion 7. 30. 江家慶. Investigation of the Fatigue Damage in Polymeric Composite by Using Optic Fiber Grating Sensors: 台灣大學機械工程研究所博士論文, 2005. 31. 陳泳智. 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究: 中央大學光電科學與工程學系碩士論文, 2007. 32. 詹凱博. 光纖光柵感測器於壓力量測之應用: 台灣大學機械工程研究所博士論文, 2005. 33. 劉家男. 椎間盤突出量與椎間核壓力之關係: 台灣大學醫學工程學研究所碩士論文, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42765 | - |
dc.description.abstract | 目的:使用應變規以及光纖研發出價格便宜、製程簡單、高壓力量測範圍之微型針式感測器以應用於椎間核壓力量測。
背景:椎間核壓力是評估脊椎植入物、骨釘、修復椎間核酵素的一項重要參數,量測椎間核壓力需使用壓力感測器對椎間盤作破壞性的穿刺,所以感測器的尺寸越小對於穿刺過程中的傷害會越少,如此椎間核的水分才不會外溢。傳統量測椎間核壓力是以應變規感測器為主,但受限於應變規尺寸使感測器無法再縮小,現有的光纖感測器可達到最小侵入性傷害以實現醫學上所謂的微創,但其價格過於昂貴且耐久度和穩定度還有待驗證。 材料與方法:將20號針頭放電加工一小孔,並將應變規平貼於小孔內,再以熱熔膠塗佈應變規表面,並加熱使其均勻分布,最後將製成之應變規感測器接上應變規訊號處理器取得訊號。利用微距控制平台將單模步階光纖固定於25號針頭內,將熱熔膠滴附於光纖尾端,並使用烤盤讓熱熔膠形成珠狀結構,最後將製成之光纖感測器接上光功率計解調。校正方面,將感測器鎖入液壓校正系統並使用材料測試機施力來校正,感測器校正之訊號會與工業用感測器之標準訊號比較。驗證方面,豬胸椎試樣被解剖成一運動單元,上方以材料測試機施力,下方置放荷重元讀取力量,用引針在椎間環創造出傷口,再將感測器導入量測椎間核壓力。 結果:本研究成功將應變規感測器尺寸縮小至20號針頭,壓力測量範圍至1.6 MPa,具有高準確度、高靈敏度、高重複性;本研究提出一種能量型的光纖感測解調理論並加以實現,此光纖感測器以單模步階光纖和25號針頭整合,具有高靈敏度,但在遲滯性和非線性度有待改進。此光纖感測系統為能量解調,相較於波長解調及相位解調,能大幅地降低實驗架設成本。 | zh_TW |
dc.description.abstract | Objective: To develop low-cost, easy-to-made, high-pressure miniature intradiscal pressure transducers using optic fibers and strain gages.
Summary of Background Data: Intradiscal pressure (IDP) is an import mechanical index for the evaluation of spinal function. The method to measure the IDP is to introduce a pressure sensor into the nucleus pulposus. The damage due to the insertion of sensor decreased with smaller dimension of the sensor. The strain gage type transducer is frequently used to measure, but its dimension is relatively large, and may induce the interference to the measurement. The size of fiber optic type transducer can be very small, but the stability and repeatability of this type of transducer is still not reliable. Material and Method: The intensity-based fiber optic transducer system is composed of pressure transducer, power meter and coupler. The fiber optic transducer is made of single mode optic fiber, 25 G needle, and ethylene-vinyl acetate copolymer. The stain gage type transducer is composed of pressure transducer, Wheatstone bridge circuit and signal amplify. The strain gage transducer is made of strain gage, 20 G needle, and ethylene-vinyl acetate copolymer. The transducers are calibrated by a home-made calibration system, which is composed of a hydraulic chamber connected with a tested transducer, a standard transducer, and a driving pump. The pressure limit of this calibration system is 1.6 MPa. After calibration, a porcine disc specimen is used to test the maneuver and feasibility of these transducers. Conclusion: This study successfully minimizes the dimension of strain gage type transducer to 20 G needle with high accuracy, precision and sensitivity. This study also showed a new type of fiber optic transducer and integrated it into a 25G needle. Nevertheless, the hysteresis and repeatability of this type of transducer made it less practical for the in vivo or in vitro experiments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:22:31Z (GMT). No. of bitstreams: 1 ntu-98-R96548004-1.pdf: 3180872 bytes, checksum: ab0f0707f677b98474839320cc3c4cd8 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 中文摘要 I
第一章 前言 1 1-1椎間盤的基本構造 1 1-2椎間核壓力之量測 1 1-3應變規感測器介紹 2 1-3-1 應變規簡介 2 1-3-2 應變規感測器 3 1-4光纖感測器介紹 5 1-4-1 光纖簡介 5 1-4-2 光在光纖中的傳播情形 5 1-4-3 光纖感測器 6 1-4-4 布拉格光纖光柵感測器 6 1-4-5 法布里-珀羅感測器 9 1-5實驗目的與假設 12 1-5-1 實驗目的 12 1-5-2 應變規感測器假設 12 1-5-3 光纖感測器假設 15 第二章 實驗設備 17 2-1應變規感測系統 17 2-1-1 應變規訊號處理器 17 2-1-2 放大盒 18 2-2光纖感測系統 19 2-2-1 光功率計 19 2-2-2 光耦合器 20 2-2-3 微距控制平台 20 2-2-4 顯微觀測平台 22 2-2-5 光纖切割機 23 2-3校正系統 23 2-3-1 液壓校正系統 23 2-3-2 材料測試機 24 第三章 材料與方法 25 3-1 感測器製程 25 3-1-1 應變規感測器製程 25 3-1-2 光纖感測器製程 28 3-2 感測器校正 30 3-2-1 應變規感測器校正 30 3-2-2 光纖感測器校正 30 3-2-3 校正夾具 31 3-2-4 感測器校正訊號處理 33 3-3 離體實驗 34 第四章 結果 36 4-1 感測器校正結果 36 4-1-1 應變規感測器校正結果 36 4-2-2 光纖感測器校正結果 40 4-3 離體實驗結果 43 4-3-1 應變規感測器離體實驗結果 43 4-3-2 光纖感測器離體實驗結果 43 第五章 討論 44 5-1感測器校正結果之討論 44 5-2離體實驗結果之討論 46 5-3實驗限制 46 第六章 結論與未來展望 47 6-1 結論 47 6-2 未來展望 47 文獻參考 49 | |
dc.language.iso | zh-TW | |
dc.title | 光纖型式與應變規型式椎間核壓力感測器
之開發與比較 | zh_TW |
dc.title | Development and Comparison of
Miniature Intradiscal Pressure Transducers Made of Optic Fibers and Strain Gages | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 馬劍清,單秋成,江家慶 | |
dc.subject.keyword | 椎間核,壓力量測,微創方法,應變規感測器,光纖感測器, | zh_TW |
dc.subject.keyword | Nucleus pulpous,Minimally invasive,Fiber optic transducer,Strain gage transducer,Intradiscal pressure, | en |
dc.relation.page | 52 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。