請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42764
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴昌? | |
dc.contributor.author | Yu-Rong Cheng | en |
dc.contributor.author | 鄭有容 | zh_TW |
dc.date.accessioned | 2021-06-15T01:22:28Z | - |
dc.date.available | 2011-08-18 | |
dc.date.copyright | 2011-08-18 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-15 | |
dc.identifier.citation | Avise J (2000) Phylogeography: The History and Formation of Species. Harvard
College Press, London. Bachman S, Muller-Parker G (2007) Viable algae released by the seastar Dermasterias imbricate feeding on the symbiotic sea anemone Anthopleura elegantissima. Mar Biol 150: 369-375. Bandera, ME, Conradi M, López-González, PJ (2005) Asterocheres hirsutus, a new species of parasitic copepod (Siphonostomatoida: Asterocheridae) associated with an Antarctic hexactinellid sponge. Helgol Mar Res 59: 315-322. Barneah O, Brickner I, Hooge M, Weis VM, LaJeunesse TC, Benayahu Y (2007) Three party symbiosis: acoelomorph worms, corals and unicellular algal symbionts in Eilat (Red Sea). Mar Biol 151: 1215-1223. Bay LK, Choat JH, van Herwerden L, Robertson DR (2004) High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past? Mar Biol 144:757–767. Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and applications. Mol Ecol 7: 367-369. Bieger A, Ebert D (2009) Expression of parasite virulence at different host population densities under natural conditions. Oecologia 160: 247-255 Bowman TE, Abele LG (1982) Classification of the Recent Crustacea. Academic Press, New York. Boxshall GA, Halsey SH (2004) An introduction to copepod diversity. Ray Society, London. Boxshall GA, Ohtsuka S (2001) Two new families of copepods (Copepoda: Siphonostomatoida) parasitic on echinoderms. J Crust Biol 21: 96-105. Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior: a research program in comparative biology. University of Chicago Press, Chicago. Brown M, Loosli R, Schmid-Hempel P (2000) Condition dependent expression of virulence in a Trypanosome infecting bumbelbees. Oikos 91:421–427. Brown P, White M, Swann D, Fuller M (1993) A severe outbreak of ectoparasitism due to Epistylis sp. in pond-reared orcanectid crayfish. J World Aquac Soc 24: 116-120. Bunge J, Fitzpatrick, Handley J (1995) Comparison of 3 estimators of the number of species. J Appl Stat 22: 45-59. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83: 575-583. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Amer Statist Asso 87: 210-217 Chen CA, Wallace CC, Wolstenholme J (2002) Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Mol Phylog Evol 23: 137-149. Cheng YR, Dai CF (2009) The infection process of a parasitic copepod, Xarifia obesa, with Stylophora pistillata. Coral Reefs 28: 681. Cheng YR, Dai CF (2010) Endoparasitic copepods may feed on zooxanthellae from their coral host, Pocillopora damicornis. Coral Reefs 29: 13-18. Cheng YR, Ho JS, Dai CF (2007) Two new species of Xarifia Humes, 1960 (Copepoda, Xarifiidae) associated with corals of Taiwan. Crustaceana 80: 1135-1144. Cheng YR, Ho JS, Dai CF (2008) Wedanus formosanus n. sp. (Poecilostomatoida, Rhynchomolgidae), a copepod parasitic in a scleractinian coral of Taiwan. Crustaceana 81: 1099-1105. Cheng YR, Ho JS, Dai CF (2009) Orstomella yaliuensis n. sp., a xarifiid copepod (Crustacea) parasitic in the polyps of hump coral Porites lutea Milne Edwards & Haime off Taiwan. Syst Parasitol 74: 17–21. Corbel MJ (1975) The immune response in fish: a review. J Fish Biol 7: 539-563. Çiçek E, Öktener A, Çapar OB (2007) First Report of Pennella balaenopterae Koren & Danielssen, 1877 (Copepoda: Pennelidae) from Turkey. Türkiye Türkiye Parazitol Derg 31: 239-241. Dai CF, Horng S (2009) Scleractinia fauna of Taiwan. I. The complex group. National Taiwan University, Taipei. Dai CF, Soong K, Huang JS, Chen CA, Fan TY, Hsieh HY, Chang JS (2002) The status of coral reefs in Taiwan and the conservation problems. Proc. IUCN/WCPA-EA4 Taipei Conference: 265-276. Dodge JD, Crawford RM (1970) A survey of thecal fine structure in the Dinophyceae. Bot J Linn Soc 63: 53-67. Dojiri M (1988) Isomolgus desmotes, new genus, new species (Lichomolgidae), a gallicolous Poecilostome copepod from the scleractinian coral Seriatopora hystrix Dana in Indonesia, with a review of gall-inhabiting crustaceans of anthozoans. J Crust Biol 8: 99-109. Dojiri M, Deets GA (1988) Norkus cladocephalus, new genus, new species (Siphonostomatoida: Sphyriidae), a copepod parasitic on an elasmobranch from southern California waters, with a phylogenetic analysis of the Sphyriidae. J Crust Biol 8: 679-687. Ekman S (1953) Zoogeography of the sea. Sidgwick and Jackson, London. Epp RW, Lewis WM (1981) Photosynthesis in copepods. Science 214: 1349-1350. Fitt WK, McFarland FK, Warner ME, Chilcoar GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45: 677-685. Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang Y, Chen C, Dai CF, Iwao K, Sheppard C, Knowlton N (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3: 1-9. Futuyma DJ (2005) Evolution. Sinauer Associates, Sunderland. Gil-Agudelo DL, Garzón-Ferreira J (2001) Spatial and seasonal variation of dark spots disease in coral communities of the Santa Marta area (Colombian Caribbean). Bull Mar Sci 69: 619-629. Gladfelter W (1982) White-band disease in Acropora palmata: implications for the structure and growth of shallow reefs. Bull Mar Sci: 639-643. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218: 384-387. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9. Harvell D, Kim K, Quirolo C, Weir J, Smith G (2001) Coral bleaching and disease: contributors to 1998 mass mortality in Briareum asbestinum (Octocorallia, Gorgonacea). Hydrobiologia 460: 97-104. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158-2162. Hillis DM (1996) Inferring complex phylogenies. Nature 383: 130-131. Ho JS (1990) Phylogenetic analysis of copepod Orders. J Crust Biol 10: 528-536. Ho JS (1994) Origin and evolution of the parasitic cyclopoid copepods. Int J Parasitol 24: 1293–1300. Ho JS (2001) Why do parasitic copepods matter? Hydrobiologia 453/454: 1-7. Ho JS, Cheng YR, Dai CF (2008) Six species of Xarifia (Copepod, Xarifiidae) new to Taiwan parasitic on the scleractinian corals. J Fish Soc Taiwan 35: 147-166. Ho JS, Cheng YR, Dai CF (2010) Hastatus faviae n. gen., n. sp., a xarifiid copepod parasitic in the honeycomb coral of Taiwan. Crustaceana 83:89-99. Ho JS, Kim IH (2003) New clausiid copepods (Poecilostomatoida) associated with polychaetes of Korea, with cladistic analysis of the family Clausiidae. J Crust Biol 23: 568-581. Ho JS, Nagasawa K, Kim IH (2007) Sarcotretes longirostris n. sp. (Copepoda: Pennellidae) parasitic on bluefin driftfish (Psenes pellucidus) from the stomachs of short-finned pilot whales caught off Japan. J Crust Biol 27: 116-120. Hoegh-Guldberg O, Hinde R (1986) Studies on a nudibranch that contains zooxanthellae. I. Photosynthesis, respiration and the translocation of newly fixed carbon by zooxanthellae in Pteraeolidia ianthina. Proc R Soc Lond B 228: 493-509. Holmes J (1995) Population regulation: a complex of interactions. Wildlife Res 22: 11-19. Horne JB, van Herwerden L, Choat JH, Robertson DR (2008) High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogenet Evol 49:629–638. Hudson D, Lester R (1992) Relationships between water quality parameters and symbiont ciliates on prawns (Penaeus japonicus Bate) in aquaculture. Acuaculture 105: 269-280. Humes AG (1960) New copepods from madreporarian corals. Kiel Meeresf 16: 229-235. Humes AG (1962) Eight new species of Xarifia (Copepoda, Cyclopoida), parasites of corals in Madagascar. Bull Mus Comp Zool 128: 37-63. Humes AG (1982) Xarifiidae (Copepoda) parasitic in Indo-Pacific scleractinian corals. Beaufortia 32: 139-227. Humes AG (1985a) Cnidarians and copepods: a success story. Trans Am Mic Soc 104: 313-320. Humes AG (1985b) A review of the Xarifiidae (Copepoda, Poecilostomatoida), parasites of scleractinian corals in the Indo-Pacific. Bull Mar Sci 36: 467-632. Humes AG (1994) How many copepods? Hydrobiologia 292/293: 1-7. Humes AG, Dojiri M (1982) Xarifiidae (Copepoda) parasitic in Indo-Pacific scleractinian corals. Beaufortia 32: 139-228. Humes AG, Dojiri M (1983) Copepoda (Xarifiidae) parasitic in scleractinian corals from the Indo-Pacific. J Nat Hist 17: 257-307. Humes AG, Gooding RU (1964) A method for studying the external anatomy of copepods. Crustaceana 6: 238-240. Humes AG, Ho JS (1967) New cyclopoid copepods associated with the coral Psammocora contigua (Esper) in Madagascar. Proc U S Nat Mus 122: 1-32. Humes AG, Ho JS (1968a) Xarifiid copepods (Cyclopoida) parasitic in corals in Madagascar. Bull Mus Comp Zool 136: 415-459. Humes AG, Ho JS (1968b) Lichomolgid copepods (Cyclopoida) associated with corals in Madagascar. Bull Mus Comp Zool 136: 353-413. Humes AG, Ho JS (1969) The genus Sunaristes (Copepoda, Harpacticoida) associated with hermit crabs in the western Indian Ocean. Crustaceana 17: 1-18. Huys R, Boxshall GA (1991) Copepod evolution. Ray Society, London. Huys R, Llewellyn-Hughes J, Olson PD, Nagasaa K (2006) Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida). Biol J Linn Soc 87: 403-425. Jones RJ, Bowyer J, Hoegh-Guldberg O, Blackall LL (2004) Dynamics of a temperature related coral disease outbreak. Marine Ecology Progress Series 281: 63-77. Kabata Z (1979) parasitic copepoda of British fishes. Ray Society, London. Kempf SC (1991) A “primitive” symbiosis between the aeolid nudibranch Berghia verrucicornis (A. Coasta, 1987) and zooxanthellae. J Moll Stud 57: 75-86. Kesteven HL (1913) A new endoparasitic copepod: morphology and development. Proc Linn Soc N S W 37: 673-688. Kevin MJ, Hall WT, McLaughlin JJA, Zahl PA (1969) Symbiodinium microadriaticum Freudenthal, a revised taxonomic description, ultrastructure. J Phycol 5: 341-350. Kim IH (2003) Copepods (Crustacea) associated with marine invertebrates from New Caledonia. Korean J Syst Zool 4: 1-167. Kim IH (2005) Four new species of the genus Panjakus (Copepoda, Cyclopoida, Anchimolgidae) associated with scleractinian corals (Cnidaria) from the Moluccas. Integ Biosci: 9: 215-228. Kim IH (2006) Copepoda (Cyclopoida: Anchimolgidae) associated with the scleractinian coral Gardineroseris planulata (Dana) from the Moluccas. Korean J Syst Zool 22: 63-78. Kim IH (2007) Copepods (Crustacea) associated with marine invertebrates from the Moluccas. Korean J Syst Zool 6: 1-126. Kim IH (2009) Poecilostome copepods (Crustacea: Cyclopoida) associated with marine invertebrates from tropical waters. Korean J Syst Zool 7: 1-90. Kim IH (2010) Siphonostomatoid copepoda (Crustacea) associated with invertebrates from tropical waters. Korean J Syst Zool 8: 1-176. Kim IH, Yamashiro H (2007) Two species of poecilostomatoid copepods inhabiting galls on scleractinian corals in Okinawa, Japan. J Crus Biol 27: 319-326. Klanten OS, Choat JH, van Herwerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670. Kuta KG, Richardson LL (2002) Ecological aspects of black band disease of corals: relationship between disease incidence and environment. Coral Reefs 21: 393-398. Lacson JM, Clark S (1995) Genetic divergence of Maldivian and Micronesian demes of the damselfishes Stegastes nigricans, Chrysiptera biocellata, C. glauca and C. leucopoma (Pomacentridae). Mar Biol 121:585–590. Lafferty KD, Holt RD (2003) How should environmental stress affect the population dynamics of disease? Ecol Lett 6: 654-664. Li S, Yu KF, Shi Q, Chen TR, Zhao MX, Zhao JX (2008) Interspecies and spatial diversity in the parasitic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching. Chin Sci Bull 53: 295-303. Lobban C (2002) Ciliate-Symbiodinium symbiosis spotted on reefs. Coral Reefs 21: 332. Marshall HC, Hayward PJ (2006) The effects of Splanchnotrophus willemi infecting Ancula gibbosa (Gastropoda: Opisthobranchia: Nudibranchia). J Mar Biol Ass U K 86: 1437-1441. Mayer P (1879) Carcinologische Mittheilungen. VII. Ein neuer parasitischer Copepode. Mitt Zool Stn Neapel 1: 515-521. McFarland FK, Muller-Parker G (1993) Photosynthesis and retention of zooxanthellae and zoochlorellae with the aeolid nudibranch Aeolidia papillosa. Biol Bull 184: 223-229. Mihalca AD, Racka K, Gherman C, Ionescu DT (2008) Prevalence and intensity of blood apicomplexan infections in reptiles from Romanis. Parasitol Res 102: 1081-1083. Misaki H (1978) Two new species of Xarifia (Copepoda, Cyclopoida) parasitic on the coral Acropora pectinata at Sabiura. Bull Mar Park Res Sta 2: 105-114. Møller AP (2010) Host-parasite interactions and vectors in the barn swallow in relation to climate change. Global Change Biol 16: 1158-1170. Mouritsen KN, Poulin R (2002) Parasitism, climate oscillations and the structure of natural communities. Oikos 97: 462-468. Muller-Parker G (1984) Dispersal of zooxanthellae on coral reefs by predators on cnidarians. Biol Bull 167: 159-167. Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic carbon in light- and shade-adapted colonies of the parasitic coral Stylophora pistillata. Proc R Soc Lond B 222: 181-202. Ogden NG, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, O’Callaghan CJ, Ramay F, Waltner-Toews D, Charron DF (2005) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36: 63-70. Ooishi S (2001) Two ascidicolous copepods, Haplostomides otagoensis n. sp. and Botryllophilus cf. banyulensis Brément, living in compound ascidians from Otago Harbor, New Zealand. Hydrobiologia 453/454: 417-426. Page RDM (1990) Component analysis: a valiant failure? Cladistics 6: 119-136. Page RDM (1994) Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst Biol 43: 58-77. Paling JE (1965) The population dynamics of the monogenean gill parasite Discocotyle sagittata Leuckart on Windermere trout, Salmo trutta L. Parasitology 55: 667-694. Paterson AM, Poulin R (1999) Have chondracanthid copepods co-speciated with their teleost host? Syst Parasitol 44: 79-85. Porter JW, Dustan P, Jaap WC, Patterson KL, Kosmynin V, Meier OW, Patterson ME, Parsons M (2001) Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460: 1-24. Poulin R (1992) Determinants of host-specificity in parasites of freshwater fishes. Int J Parasitol 22: 753-758. Poulin R, Mouritsen KN (2005) Climate change, parasitism and structure of intertidal ecosystems. J Helminthol 80: 183-191. Price PW (1980) Evolutionary biology of parasites. Princeton University Press, New Jersey. Qasim SZ, Sankaranarayanan VN (1970) Production of particulate matter by the reef on Kavaratti Atoll. Limnol Oceanogr 15: 574-578 Richardson LL, Goldberg WM, Carlton RG, Halas JC (1998a) Coral disease outbre ak in the Florida Keys: Plague type II. Rev Biol Trop 46 Suppl 5: 187-198. Richardson LL, Goldberg WM, Kuta KG, Aronson RB, Smith GW, Richie KB, Halas JC, Feingold JS, Miller SL (1998b) Florida’s mystery coral-killer identified. Nature 392: 557-558. Rohde K, Hayward CJ (2000) Oceanic barriers as indicated by scombrid fishes and their parasites. Int J Parasitol 30: 579-583. Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67: 1043-1068. Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271: 640-642. Romano SL, Palumbi SR (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J Mol Evol 45: 397-411. Sanford E (1999) Regulation of keystone predation by small changes in ocean temperature. Science 283: 2095-2097. Schall JJ (1996) Malarial parasites of lizards. Adv Parasitol 37: 255-333. Seavy BE, Muller-Parker G (2002) Chemosensory and feeding response of the nudibranch Aeolida papillosa to the symbiotic sea anemone Anthopleura elegantissima. Invertebr Biol 121: 115-125. Smallridge CJ, Bull CM (2000) Prevalence and intensity of the blood parasite Hemolivia mariae in a field population of the skink Tiquila rugosa. Parasitol Res 86: 655-660. Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold, London. Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153: 63-74. Stock JH (1975) Corallovexiidae, a new family of transformed copepods endoparasitic in reef corals. Stud Fauna Curacao 47: 1-45. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Siqueira MF, Grainger MFA, Hannah L, Hughes L, Huntley B, Jaarsveld ASv, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427: 145-148. Trench RK (1993) Microalgal-invertebrate symbioses: a review. Endocyt Cell Res 9: 135-175. Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii, sp. nov., S. kawagutii, sp. nov., and S. pilosum, sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23: 469-481. Trench RK, Winsor H (1987) Symbiosis with dinoflagelates in two pelagic flatworms, Amphiscolops sp. and Haplodiscus sp. Symbiosis 3: 1-21. Turner JT (1991) Zooplankton feeding ecology: Do co-occurring copepods compete for the same food? Rev Aquat Sci 5: 101-195. Vaughan TW, Wells JW (1943) Revision of the suborders, families, and genera of the Scleractinia. Geol Soc Am Spec Pap 44: 1-363. Veron JEN (1986) Corals of Australia and the Indo-Pacific. Angus and Robertson, Sydney. Veron JEN (1995) Corals in space and time: the biobeography and evolution of the scleractinian. University of new South Wales Press, Sydney. Wakefield TS, Farmer MA, Kempf SC (2000) Revised description of the fine structure of in situ “zooxanthellae” genus Symbiodinium. Biol Bull 199: 76-84. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42764 | - |
dc.description.abstract | 橈足類是一群種類數量眾多的甲殼類動物,其中寄生於造礁珊瑚群體上的種類超過365種,廣泛分布於印度-太平洋珊瑚礁區,但是在西太平洋北部則甚少研究,而且牠們與珊瑚的關係也缺乏了解。本論文之目標為調查台灣海域產石珊瑚群體上的寄生性橈足類之物種多樣性,探討牠們的親緣關係及其與宿主珊瑚在演化上的關係,並且探究橈足類感染與宿主珊瑚體內共生藻的關係。
在寄生性橈足類之物種多樣性方面,本研究在採集自台灣各海域的888株109種石珊瑚小群體上,共發現36種寄生性橈足類,包括1新屬新種 (Hastatus faviae)、4新種(Wedanus formosanus, Orstomella yaliuensis, Xarifia insolita, X. longa)、8種可能新種及23種新記錄種。 在親緣關係方面,本研究對81種珊虱科橈足類進行支序分析(Cladistic analysis),以Sabelliphilidae為外群,選用了40個外部形態特徵,利用儉約性與最大相容性原則,建構牠們之間的親緣關係,並以TreeMap探討其與石珊瑚之間的演化關係。結果顯示珊虱科為一單系群,其中細毛虱屬(Zazaranus)可能為較早衍生出的種類,牠們可能起源於印度洋,其後逐漸往太平洋分佈,並且與石珊瑚有某種程度的共演化關係。 在寄生性橈足類與珊瑚的關係方面,為了瞭解寄生性橈足類是否攝食共生藻,本研究利用組織學切片、掃瞄式及穿透式電子顯微鏡檢視珊虱的腸道內含物,結果發現牠們體內皆具有共生藻(Symbiodinium sp.);螢光顯微鏡觀察結果發現這些共生藻能在珊虱體內存活三週以上,且仍保有行光合作用的能力;其次,培養實驗的結果顯示,共生藻可能將其光合作用產物提供給珊虱利用,因而對珊虱的存活率有益;此種共生關係可能代表橈足類與共生藻建立共生關係的初始階段,而珊虱體內保有共生藻的現象有助於共生藻在珊瑚礁上的散布。 在橈足類感染與珊瑚共生藻密度的關係方面,本研究於2007年7月至2008年11月間,調查台灣南部南灣海域細枝鹿角珊瑚(Pocillopora damicornis)群體上橈足類的感染情況與共生藻密度的關係,結果顯示在2007年的夏季,珊瑚感染珊虱的盛行率、平均密度、平均豐度及平均強度皆較高,而且白化珊瑚群體的珊虱平均密度高於健康珊瑚及嚴重白化珊瑚群體。此結果顯示橈足類的感染情況與珊瑚的健康狀況及共生藻密度有密切關係,而珊虱感染密度在白化珊瑚較高的現象可能會使白化珊瑚更惡化而加速其死亡。 本研究結果顯示,珊瑚寄生性橈足類物種多樣性很高,並且與石珊瑚在演化及生態上有密切關係。本論文增進我們對珊瑚寄生性橈足類系統分類學及生態學的瞭解,並且提供做為珊瑚礁保育的基礎資料。 | zh_TW |
dc.description.abstract | Copepods are one group of diverse and abundant crustaceans associated with scleractinian corals in Indo-Pacific Ocean. To date, more than 365 species of copepods associated with corals have been discovered, however, very little is known about the species diversity of parasitic copepods in corals from North Pacific and their possible effects on scleractinian corals. The objectives of this study were (1) to discover the species diversity of these parasitic copepods in the surrounding seas of Taiwan, (2) to reveal their phylogeny and evolutionary relationships with coral hosts, (3) to uncover the relationships between parasitic copepods and zooxanthellae.
A total of 888 colonies in 109 species of scleractinian corals were examined for collecting parasitic copepods at various localities in Taiwan from 2005 to 2010. Totally, 36 species of copepods including 1 new genus and species (Hastatus faviae), 4 new species (Wedanus formosanus, Orstomella yaliuensis, Xarifia insolita, and X. longa), 8 possible new species, and 23 new recorded species were discovered. Cladistic analyses were carried out using parsimony and compatibility criteria to restructure the phylogeny of Xarifiidae. The Sabelliphilidae was selected as an outgroup in the analyses, and a total of 40 morphological characters were ordered from 81 species of Xarifiidae. The TreeMap was used to examine the possible co-evolutionary association by comparing the phylogenies of corals and xarifiid copepods. The results suggested that the Xarifiidae was monophyletic and the genus, Zazaranus, was the first lineage diverged from the xarifiid clade. They might originate from Indian Ocean and gradually dispersed to Pacific Ocean and develop a co-evolutionary relationship with their coral hosts. In order to know whether parasitic copepods feed on zooxanthellae cells from their host corals, the xarifiid copepods were examined by histological section and electron microscopic observations (SEM and TEM). The results showed that their guts contained many zooxanthellae cells (Symbiodinium sp.). In the fluorescent microscopic observations, these algal cells possibly remained viable and photosynthetically active for at least 3 wk. The results of cultivation experiment suggested that the zooxanthellae may be beneficial to the survival of xarifiid copepods under light condition, possibly through conducting photosynthesis and releasing photosynthetic products to them. The relationships between copepods and zooxanthellae might be referred to a primitive form of invertebrates-zooxanthellae symbiosis. The viable zooxanthellae in the guts of xarifiid copepods may provide a source for dispersal over coral reefs. In the study of relationships between copepods and zooxanthellae density, a coral species, Pocillopora damicornis, was examined in Nanwan Bay, southern Taiwan from July 2007 to November 2008. The results showed that prevalence, mean density, mean abundance and mean intensity of xarifiid copepods were higher in the summer of 2007. The mean density of xarifiid copepods was higher in the bleaching corals, but it was much lower in healthy corals and heavily bleached corals. These results suggested that the occurrence of xarifiid copepods might relate to healthy condition of coral hosts and their zooxanthellae density. The high infection by xarifiid copepods in bleaching corals might further jeopardize the survival of corals by reducing their zooxanthellae density and inducing more physiological stress.。 The results of this dissertation showed that the parasitic copepods have high species diversity and close relationships of evolution and ecology with host corals. The contributions of this dissertation provided basic information concerned in systematics and ecology of parasitic copepods from corals in Taiwan. These results may also have some valuable implications for the conservation of coral reefs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:22:28Z (GMT). No. of bitstreams: 1 ntu-100-D94241001-1.pdf: 7970058 bytes, checksum: f4a44f7ea703ceb93900be0db5d0be74 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Abstract in Chinese…..…………………………..………………….…………...…...I
Abstract in English…..…………………………..………………….………………III Table of contents………..…………………………..……………...………………..VI Chapter 1 General introduction………………..…………...………..…….………..1 1-1 Parasitic copepods in marine ecosystems………..………..………....………..1 1-2 Parasitic copepods of corals…………..…………………..…..…...…………..2 1-3 The evolutionary relationship between parasitic copepods and corals….....….4 1-4 The ecological relationship between parasitic copepods and host corals…......7 1-5 Aims of this dissertation………………..………………………..……………8 Chapter 2 Taxonomy of copepods associated with corals from Taiwan……….10 2-1 Introduction……………………………………………………......................10 2-2 Materials and Methods…………………….....................................................11 2-2-1 Sampling sites…………….....................................................................11 2-2-2 Target species of corals……………………………..............................12 2-2-3 Specimen collection……………………................................................13 2-2-4 Morphological studies……………………………................................13 2-3 Results…………………….............................................................................14 2-4 Discussion........................................................................................................62 2-5 Talbes……………………...............................................................................64 2-6 Figures…………………….............................................................................67 Chapter 3 Phylogeny and biogeography of xarifiid copepods and their co-evolution relationship with coral hosts: a cladistic analysis ……………………………………..………………………….120 3-1 Introduction…………………………………………………………............120 3-2 Materials and Methods.. ……………………………………........................123 3-2-1 Cladistic analysis…………………………..…...……………….........123 3-2-2 TreeMap analysis………………………………………….…….……125 3-3 Results and Discussion…………………...……...........................................125 3-3-1 Phylogeny of Xarifiidae…………………………................................125 3-3-2 Biogeograph………………………………..........................................126 3-3-3 Co-evolution…………………….........................................................128 3-4 Figures……………………............................................................................131 Chapter 4 Endoparasitic copepods may feed on zooxanthellae from their coral host, Pocillopora damicornis..................................................................137 4-1 Introduction……………………………………………………....................137 4-2 Materials and Methods……………………...................................................138 4-2-1 Sample collection………………….....................................................138 4-2-2 Morphological studies.…………………………….............................139 4-2-3 Fluorescence microscopic observations……………………...............140 4-2-4 Cultivation experiments……………………………............................141 4-3 Results……………………………………………………............................141 4-4 Discussion……………………………………………………......................144 4-5 Figures……………………...........................................................................149 Chapter 5 The infection of xarifiid copepods on Pocillopora damicornis and its relationship with coral bleaching……..................................................154 5-1 Introduction………………………………………………............................154 5-2 Materials and methods………………………...............................................157 5-2-1 Target species of host corals and parasitic copepod…………….…....157 5-2-2 Sample collection…………….............................................................157 5-2-3 Morphological studies……………......................................................158 5-2-4 Measuring the zooxanthellae density of coral fragments……….……158 5-2-5 Measuring the surface area of coral fragments………………….……159 5-2-6 Epidemiology of parasitic copepods………………….……..….……160 5-3 Results and Discussion……………………………......................................160 5-4 Talbes…………………….............................................................................164 5-5 Figures……………………...........................................................................166 Chapter 6 Conclusions……………………………………………….....................167 6-1 Figures………...……………………...……………….................................169 Reference.……………………………………………………..................................170 Appendix……………………………………………………...................................186 | |
dc.language.iso | en | |
dc.title | 台灣近海石珊瑚寄生性珊虱(橈足類)之系統分類學與生態學 | zh_TW |
dc.title | Systematics and Ecology of Xarifiid Copepods Associated with Scleractinian Corals in the Surrounding Seas of Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 石長泰,鄭明修,黃將修,張文炳,施秀惠 | |
dc.subject.keyword | 珊虱科,珊瑚寄生性橈足類,石珊瑚,親緣關係,珊瑚白化, | zh_TW |
dc.subject.keyword | Xarifiidae,Parasitic copepod on corals,Scleractinian corals,Phylogeny, | en |
dc.relation.page | 285 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 7.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。