Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42763
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟
dc.contributor.authorCheng-Fu Liaoen
dc.contributor.author廖正富zh_TW
dc.date.accessioned2021-06-15T01:22:26Z-
dc.date.available2011-07-24
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citation1. America's Bone Health.The State of Osteoporosis and Low Bone Mass in Our Nation.Available from: www.gcmradiology.com/vertebroplasty.php. 2002.
2. FRANK H. Netter MD. ATLAS OF HUMAN ANATOMYed.
3. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7-29, 2000: highlights of the conference. South Med J 2001;94:569-73.
4. Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999;24:1521-6.
5. Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 2001;26:1537-41.
6. Belkoff SM, Sanders JC, Jasper LE. The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement. J Biomed Mater Res 2002;63:396-9.
7. Chiang CK, Wang YH, Yang CY, et al. Prophylactic vertebroplasty may reduce the risk of adjacent intact vertebra from fatigue injury: an ex vivo biomechanical study. Spine 2009;34:356-64.
8. El-Khatib A, Guillon F. Lumbar intradiscal pressure and whole-body vibration--first results. Clin Biomech (Bristol, Avon) 2001;16 Suppl 1:S127-34.
9. El-Khatib A, Guillon F, Domont A. VERTICAL VIBRATION TRANSMISSION THROUGH THE LUMBAR SPINE OF THE SEATED SUBJECT--FIRST RESULTS. Journal of Sound and Vibration 1998;215:763-73.
10. Grados F, Depriester C, Cayrolle G, et al. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford) 2000;39:1410-4.
11. Hinz B, Seidel H, Hofmann J, et al. The significance of using anthropometric parameters and postures of European drivers as a database for finite-element models when calculating spinal forces during whole-body vibration exposure. International Journal of Industrial Ergonomics
2008;38:816-43.
12. Hitchon PW, Goel V, Drake J, et al. Comparison of the biomechanics of hydroxyapatite and
polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J
Neurosurg 2001;95:215-20.
13. Huy M. Do M. Vertebroplasty after a painful spine fracture. Available from: http://www.spine health.com/treatment/back-surgery/vertebroplasty-after-a-painful-spine-fracture.
14. Jasper LE, Deramond H, Mathis JM, et al. The effect of monomer-to-powder ratio on the material properties of cranioplastic. Bone 1999;25:27S-9S.
15. Johannessen W, Vresilovic EJ, Wright AC, et al. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Ann Biomed Eng 2004;32:70-6.
16. Kayanja MM, Evans K, Milks R, et al. Adjacent level load transfer following vertebral augmentation in the cadaveric spine. Spine 2006;31:E790-7.
17. Kettler A, Schmoelz W, Shezifi Y, et al. Biomechanical performance of the new BeadEx implant in the treatment of osteoporotic vertebral body compression fractures: restoration and maintenance of height and stability. Clin Biomech (Bristol, Avon) 2006;21:676-82.
18. Kumar A, Varghese M, Mohan D, et al. Effect of whole-body vibration on the low back. A study of tractor-driving farmers in north India. Spine 1999;24:2506-15.
19. Lim TH, Brebach GT, Renner SM, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 2002;27:1297-302.
20. Lings S, Leboeuf-Yde C. Whole-body vibration and low back pain: a systematic, critical review of the epidemiological literature 1992-1999. Int Arch Occup Environ Health 2000;73:290-7.
21. Lo YP, Chen WJ, Chen LH, et al. New vertebral fracture after vertebroplasty. J Trauma 2008;65:1439-45.
22. Luoma K, Riihimaki H, Luukkonen R, et al. Low back pain in relation to lumbar disc degeneration. Spine 2000;25:487-92.
23. MacLean JJ, Owen JP, Iatridis JC. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. J Biomech 2007;40:55-63.
24. Mansfield NJ, Marshall JM. Symptoms of musculoskeletal disorders in stage rally drivers and co-drivers. Br J Sports Med 2001;35:314-20.
25. Mathis JM. Percutaneous vertebroplasty: complication avoidance and technique optimization. AJNR Am J Neuroradiol 2003;24:1697-706.
26. Matsumoto Y, Griffin MJ. MOVEMENT OF THE UPPER-BODY OF SEATED SUBJECTS EXPOSED TO VERTICAL WHOLE-BODY VIBRATION AT THE PRINCIPAL RESONANCE FREQUENCY. Journal of Sound and Vibration 1998;215:743-62.
27. Pietri F, Leclerc A, Boitel L, et al. Low-back pain in commercial travelers. Scand J Work Environ Health 1992;18:52-8.
28. Pope MH, Magnusson M, Broman NH, et al. The dynamic response of human subjects while seated in car seats. Iowa Orthop J 1998;18:124-31.
29. Seidel H. On the relationship between whole-body vibration exposure and spinal health risk. Ind Health 2005;43:361-77.
30. Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 2003;226:119-24.
31. van Poppel MN, Koes BW, Deville W, et al. Risk factors for back pain incidence in industry: a prospective study. Pain 1998;77:81-6.
32. Wilke HJ, Mehnert U, Claes LE, et al. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine 2006;31:2934-41.
33. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755-62.
34. 梁濟康脊醫、譚宗城脊醫. 淺談骨質疏鬆. Available from:
http://www.cda.org.hk/Big5/Osteoporo.html.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42763-
dc.description.abstract目的:探討脊骨整型術後之椎骨經疲勞負載後之力學反應變化
背景簡介:骨質疏鬆症是導致椎骨發生壓迫性骨折的因子,而脊骨整型手術是治療此病症的方法。在臨床結果中,這些病患在術後經過一段時間,有可能再次發生骨折。每天各式的活動都會對脊椎造成疲勞負載,這是導致椎骨壓迫性骨折的原因之一,也是脊骨整型手術後再次骨折的重要因素之一。我們希望能從脊椎受到疲勞負載過程的力學反應變化,了解造成椎骨再破壞的原因,或許能夠用來預測及預防椎骨的再破壞。
材料與方法:採用人體胸椎之運動元共十組,每一試樣為四節椎骨。在去除軟組織後,將試樣第一與第四節椎骨包覆強化樹脂並架設加速度計。完成後將試樣置於實驗機台進行衝擊測試,量測試樣之剛性與振動加速度。試樣在不同的階段接受衝擊測試,首先模擬椎骨的壓迫性骨折,接下來注射骨水泥對破壞節椎骨補強。等待骨水泥硬化後,試樣進行疲勞負載的階段。實驗中共模擬三組不同載重情況下的疲勞負載,試樣依序接受650 牛頓、950牛頓及1150 牛頓的疲勞破壞,每一組負載時間皆為5 小時,各組之間會有12 小時的休息。
結果:在椎骨模擬壓迫性骨折後,椎骨試樣剛性下降13.5% (P = 0.14),第二節椎骨加速度上升25.8% (P = 0.00),而使用骨水泥補強後,可以椎骨的剛性及加速度回復至接近破壞前。在5 小時的疲勞負載後,椎骨運動元之剛性增加26% (P = 0.00),而第一節椎骨加速度下降了14% (P = 0.00),休息可以使之回復。在負載大的組別中,加速度與剛性的變化速度較快,在第1 小時疲勞負載造成的變化最大。
結論:本研究顯示破壞會造成椎骨受衝擊時的剛性降低而加速度上升,破壞節椎骨處於不穩定的狀態,而經皮脊椎整型手術能夠恢復椎骨的穩定度。隨著疲勞負載的時間,脊椎有剛性增加與加速度下降的現象,而休息可使脊椎性能回復。從數學模型計算脊椎受力變
化,結果顯示在經過5 小時疲勞負載後,脊椎受力增加了1.46%,而在負重較高的情況中,脊椎受力增加的比較快速。因此,長時間疲勞負載是造成脊椎再破壞的因子,在負重較高的情況中,休息顯得更為重要。
zh_TW
dc.description.abstractObjective: To investigate the effect of fatigue loading on the biomechanical responses of spinal column post vertebroplasty.
Summary of Background Data: Fatigue loading is one of the risk factors for vertebral compression fracture. Vertebroplasty is a minimal invasive surgery for spinal compression fracture. It is believed that the fatigue loading is also an important factor for the vertebral
re-fracture post vertebroplasty. We hope we can explore the mechanical response of augmented vertebra secondary to the fatigue loading. The results may help to predict or prevent the vertebral refracture.
Methods: Ten human thoracic motion segments (T4-T7, T5-T8, T9-T12) were used and set up accelerometer on 1st and 2nd level. Specimens were applied with impulse testing to measure the stiffness and acceleration after fractured, augmented, and fatigue loading. The fatigue loadings
were 650N, 950N, and 1150N at 5Hz for 1, 2, 3, 4, and 5 hours (18,000, 36,000, 54,000, 72,000, and 90,000 cycles), and 12-hours rest was applied between different loadings. The paired-t test was respectively performed to evaluate the variations of stiffness and acceleration after a series
of fatigue loading. The independent t-test was performed to evaluate the variation of acceleration on 1st and 2nd level.
Results: After fractured, the stiffness decreased 13.5% (P = 0.14), and acceleration of level 2 increased 25.8% (P = 0.00). The variations of these properties were recovered after cement injection. After 5-hours fatigue loading, the stiffness increased 26% (P = 0.00) but acceleration of
level 1 decreased 14% (P = 0.00), and both recovered after 12-hours rest. Under high loading condition, the changing rates of acceleration and stiffness is higher, especially in the first hour.
Conclusion: Spinal stability was decreased after vertebral compression fracture, and recovered post vertebroplasty. The stiffness increased but acceleration decreased after fatigue loadings, and rest could restore these mechanical properties. The results of numerical model indicated the
internal force of spinal column increased 1.46% after 5-hours fatigue loading. The internal force of spinal column increased rapidly under high loading condition. Therefore, a long-term activity is a risk factor for vertebral refracture.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:22:26Z (GMT). No. of bitstreams: 1
ntu-98-R96548039-1.pdf: 1665735 bytes, checksum: 46ea098b11bf72bfa98158d1ffeeda63 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents第一章 序論.............................................. 1
1-1 脊椎的基本構造....................................... 1
1-2 骨質疏鬆症........................................... 3
1-3 經皮脊骨整型手術..................................... 4
1-4 脊椎生物力學......................................... 5
1-5 文獻探討............................................. 6
1-5-1 疲勞負載與振動對人體脊椎之影響..................... 6
1-5-2 脊骨整型手術後脊椎力學性質之量測................... 7
1-5-3 脊椎振動加速度之研究............................... 8
1-6 實驗目的............................................. 9
第二章 實驗材料與測試方法............................... 10
2-1 實驗儀器............................................ 10
2-1-1 連續衝擊測試平台.................................. 10
2-1-2 往復式衝擊模組.................................... 11
2-1-3 單軸向加速度計與訊號處理器........................ 11
2-2 實驗階段............................................ 12
2-2-1 衝擊測試.......................................... 13
2-2-2 疲勞負載.......................................... 13
2-2-3 椎骨試樣準備...................................... 13
2-2-4 模擬椎骨壓迫性骨折................................ 15
2-2-5 骨水泥注射........................................ 15
2-3 資料分析............................................ 16
2-3-1 剛性分析.......................................... 16
2-3-2 加速度訊號分析.................................... 17
2-3-3 統計分析方法...................................... 18
第三章 實驗結果......................................... 19
3-1 椎骨運動元之剛性變化................................ 19
3-1-1 負載時間與休息之剛性變化.......................... 19
3-1-2 破壞前後及骨水泥補強後剛性比較.................... 19
3-1-3 負載大小與剛性變化量之關係........................ 20
3-2 椎骨運動元之加速度變化.............................. 21
3-2-1 第一與第二節椎骨加速度比較........................ 21
3-2-2 負載時間與休息之加速度變化........................ 22
3-2-3 加速度之頻域...................................... 23
3-4 脊椎受力之數學分析.................................. 24
第四章 討論............................................. 26
4-1 實驗設計之討論...................................... 26
4-2 剛性變化之討論...................................... 26
4-3 加速度變化之討論.................................... 27
4-6 實驗限制............................................ 27
第五章 結論與未來展望................................... 28
5-1 結論................................................ 28
5-2 未來展望............................................ 28
參考文獻................................................ 29
dc.language.isozh-TW
dc.subject疲&#63791zh_TW
dc.subject負載zh_TW
dc.subject衝擊測試zh_TW
dc.subject加速&#64001zh_TW
dc.subjectaccelerationen
dc.subjectfatigueen
dc.subjectimpulse testen
dc.title疲勞負載對脊骨整型術後脊椎之靜態與動態反應的影響zh_TW
dc.titleEffect of Fatigue Loading on The Static and Dynamic Response of Spinal Column Post Vertebroplastyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾永輝,孫瑞昇,黃世欽
dc.subject.keyword疲&#63791,負載,衝擊測試,加速&#64001,zh_TW
dc.subject.keywordfatigue,impulse test,acceleration,en
dc.relation.page31
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved