請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭?堅 | |
| dc.contributor.author | Chien-Ling Lo | en |
| dc.contributor.author | 駱建陵 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:22:13Z | - |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-23 | |
| dc.identifier.citation | 1. Bouaziz, L., E. Briys, and M. Crouhy, (1994): 'The Pricing of Forward-Starting Asian Options,' Journal of Banking and Finance, 18(5), 823-839.
2. Chang, C. C. and C. Y. Tsao, (2003): 'An Accurate and E cient Method for Pricing Asian Options,' Working paper, Department of Finance, National Central University, Chung-Li, Taiwan. 3. Chung, S. L., M. Shackleton, and R. Wojakowski, (2003): 'Efficient quadratic approximation of floating strike Asian option values,' forthcoming in Finance (AFFI), 24(1), 49-62. 4. Henderson, V. and R. Wojakowski, (2002): 'On the Equivalence of Floating and Fixed Strike Asian Options,' Applied Probability Trust, 39, 391-394. 5. Henderson, V. , D. Hobson, W. Shaw, and R. Wojakowski, (2003): 'Bounds for Floating-Strike Asian Options using Symmetry,' Working paper. 6. Hull, J., and A. White, (1993): 'Efficient Procedures for Valuing European and American Path-Dependent Options,' Journal of Derivatives, 1, 21-31. 7. Ju, M. (2002): 'Pricing Asian and Basket Options Via Taylor Expansion,' Journal of Computational Finance, 5(3), 113-129. 8. Kemna, A. G. Z., and A. C. F. Vorst, A. (1990): 'A Pricing Method for Options Based on Average Asset Values,' Journal of Banking and Finance, 14(1), 113-129. 9. Levy, E (1992): 'Pricing European Average Rate Currency Options,' Journal of International Money and Finance, 11, 474-491. 10. Milevsky, M. A., S. E. Posner, (1998): 'Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution,' Journal of Financial and Quantitative Analysis, 33(3), 409-422. 11. Posner, S. E. and M. A. Milevsky,(1998): 'Valuing Exotic Options by Approximating the SPD with Higher Moments,' Journal of Financial Engineering, 7(2), 109-125. 12. Roger, L. C. G., and Z. Shi (1995): 'The Value of an Asian Option,' Journal of Applied Probability, 32(4), 1077-1088. 13. Turnbull, S. M., and L. M. Wakeman (1991): 'A Quick Algorithm for Pricing European Average Options,' Journal of Financial and Quantitative Analysis, 26(3), 377-389. 14. Tsao, C. Y., C. C. Chang, , and C. G. Lin (2003): 'Analytic Approximation Formulae for Pricing Forward-starting Asian Options,' Journal of Futures Markets, 23(5), 487-516. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42758 | - |
| dc.description.abstract | 本篇論文在Black – Scholes (1973) 的模型假設下,以解析方法估計浮動履約的亞式選擇權價格,提出兩個解析公式。主要參考文獻以二階泰勒展開式的方法逼近,並假設此隨機變數為常態分配或卡方分配。本篇論文第一個公式僅修正文獻中展開式的精確度,第二個公式則提出甚至不需要使用泰勒展開式。然而數值結果顯示,在本篇所假設的參數下,第二個公式估計最好。
另外本篇論文對部份文獻所提出的公式提出誤差上界,並以蒙地卡羅模擬直方圖觀察常態分配與卡方分配假設的合理性。最後,我們將本篇論文所需的繁雜計算過程留在附錄。 | zh_TW |
| dc.description.abstract | In this thesis we derive two analytic approximation formulas for floating strike Asian options and assume that assumptions underlying Black-Scholes (1973) model hold. In the literature, some researches use the second-order Taylor expansion to approximate the price of Asian options and they assume the Quadratic approximation is normally or chi-square distributed. In this thesis, we first derive the formula by improving the precision of the Taylor expansions. Next, we suggest that we even do not need to truncate the random variable via Taylor expansions, and the numerical results witness that our second formula is the most accurate approximation for selected values of the underlying parameters.
Additionally, we derive the error upper bound for some formulas, and we also observe the rationality of all the assumptions by using the histogram Monte Carlo simulation. Finally, we leave all the troublesome calculations in Appendix. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:22:13Z (GMT). No. of bitstreams: 1 ntu-98-R96221037-1.pdf: 2016287 bytes, checksum: e3bc959b1b7bc0cc23371b3b98ef0885 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Acknowledgements..i
Abstract..ii 1 Introduction..1 2 The BBC Model..5 2.1 The put-call parity for Asian options..8 2.2 The fixed-floating symmetry relations for Asian options..10 2.3 Upper bound to the pricing error..10 3 The Enhanced Linear Model by Chung..13 3.1 Upper bound to the pricing error..15 4 The Quadratic model..18 4.1 Tsao's Quadratic model..18 4.2 Chung's Quadratic model..19 4.2.1 Upper bound to the error..20 4.2.2 Chung's Quadratic model with a Normal distribution as a proxy..25 4.2.3 Chung's Quadratic model with a central chi-square distribution as a proxy..27 5 Numerical Analysis..32 5.1 Histograms for the unknown distributions..32 5.2 A central chi-square distributed approximation with the true moments..37 5.3 Numerical Comparisons..39 6 Conclusions..45 Appendix A. Formulas..46 A1..46 A2..46 A3..47 A4..48 A5..54 Appendix B. Algorithms..57 Reference..58 | |
| dc.language.iso | en | |
| dc.subject | 直方圖模擬 | zh_TW |
| dc.subject | 亞式選擇權 | zh_TW |
| dc.subject | 可析逼近 | zh_TW |
| dc.subject | 浮動履約 | zh_TW |
| dc.subject | 泰勒展開式 | zh_TW |
| dc.subject | 二次逼近 | zh_TW |
| dc.subject | floating strike | en |
| dc.subject | histogram simulation | en |
| dc.subject | Quadratic approximation | en |
| dc.subject | Taylor expansion | en |
| dc.subject | Asian option | en |
| dc.subject | analytic approximation | en |
| dc.title | 亞式選擇權的可析逼近 | zh_TW |
| dc.title | Analytic approximations for Asian options | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂育道,張森林 | |
| dc.subject.keyword | 亞式選擇權,可析逼近,浮動履約,泰勒展開式,二次逼近,直方圖模擬, | zh_TW |
| dc.subject.keyword | Asian option,analytic approximation,floating strike,Taylor expansion,Quadratic approximation,histogram simulation, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
