Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥彬
dc.contributor.authorHsi-Wen Wangen
dc.contributor.author王希文zh_TW
dc.date.accessioned2021-06-15T01:20:42Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation1. Vita JA, Loscalzo J. Shouldering the risk factor burden: infection, atherosclerosis, and the vascular endothelium. Circulation 2002;106:164-6.
2. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115-26.
3. Mattila KJ, Nieminen MS, Valtonen VV, et al. Association between dental health and acute myocardial infarction. BMJ 1989;298:779-81.
4. Beck J, Garcia R, Heiss G, Vokonas PS, Offenbacher S. Periodontal disease and cardiovascular disease. J Periodontol 1996;67:1123-37.
5. Janket SJ, Baird AE, Chuang SK, Jones JA. Meta-analysis of periodontal disease and risk of coronary heart disease and stroke. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:559-69.
6. Genco R, Offenbacher S, Beck J. Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. J Am Dent Assoc 2002;133 Suppl:14S-22S.
7. Li L, Messas E, Batista EL, Jr., Levine RA, Amar S. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation 2002;105:861-7.
8. Qi M, Miyakawa H, Kuramitsu HK. Porphyromonas gingivalis induces murine macrophage foam cell formation. Microb Pathog 2003;35:259-67.
9. Tonetti MS, D'Aiuto F, Nibali L, et al. Treatment of periodontitis and endothelial function. N Engl J Med 2007;356:911-20.
10. Wang PL, Shinohara M, Murakawa N, et al. Effect of cysteine protease of Porphyromonas gingivalis on adhesion molecules in gingival epithelial cells. Jpn J Pharmacol 1999;80:75-9.
11. Gibson FC, 3rd, Yumoto H, Takahashi Y, Chou HH, Genco CA. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. J Dent Res 2006;85:106-21.
12. Giacona MB, Papapanou PN, Lamster IB, et al. Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro. FEMS Microbiol Lett 2004;241:95-101.
13. Pucar A, Milasin J, Lekovic V, et al. Correlation between atherosclerosis and periodontal putative pathogenic bacterial infections in coronary and internal mammary arteries. J Periodontol 2007;78:677-82.
14. Galanos C, Freudenberg MA. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 1993;187:346-56.
15. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995;13:437-57.
16. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990;249:1431-3.
17. Visintin A, Latz E, Monks BG, Espevik T, Golenbock DT. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J Biol Chem 2003;278:48313-20.
18. Hsu HY, Wen MH. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem 2002;277:22131-9.
19. Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y. Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human toll-like receptor 4. Infect Immun 2002;70:218-25.
20. Warnholtz A, Nickenig G, Schulz E, et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999;99:2027-33.
21. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 1996;20:707-27.
22. Finkel T. Redox-dependent signal transduction. FEBS Lett 2000;476:52-4.
23. Yoshizumi M, Tsuchiya K, Tamaki T. Signal transduction of reactive oxygen species and mitogen-activated protein kinases in cardiovascular disease. J Med Invest 2001;48:11-24.
24. Woo CH, Lim JH, Kim JH. Lipopolysaccharide induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells. J Immunol 2004;173:6973-80.
25. Lin SJ, Shyue SK, Hung YY, et al. Superoxide dismutase inhibits the expression of vascular cell adhesion molecule-1 and intracellular cell adhesion molecule-1 induced by tumor necrosis factor-alpha in human endothelial cells through the JNK/p38 pathways. Arterioscler Thromb Vasc Biol 2005;25:334-40.
26. Wung BS, Cheng JJ, Chao YJ, Hsieh HJ, Wang DL. Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ Res 1999;84:804-12.
27. Kumar A, Middleton A, Chambers TC, Mehta KD. Differential roles of extracellular signal-regulated kinase-1/2 and p38(MAPK) in interleukin-1beta- and tumor necrosis factor-alpha-induced low density lipoprotein receptor expression in HepG2 cells. J Biol Chem 1998;273:15742-8.
28. Jaworowski A, Wilson NJ, Christy E, Byrne R, Hamilton JA. Roles of the mitogen-activated protein kinase family in macrophage responses to colony stimulating factor-1 addition and withdrawal. J Biol Chem 1999;274:15127-33.
29. He H, Wang X, Gorospe M, Holbrook NJ, Trush MA. Phorbol ester-induced mononuclear cell differentiation is blocked by the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059. Cell Growth Differ 1999;10:307-15.
30. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995;270:16483-6.
31. Xi XP, Graf K, Goetze S, Fleck E, Hsueh WA, Law RE. Central role of the MAPK pathway in ang II-mediated DNA synthesis and migration in rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999;19:73-82.
32. Geng Y, Valbracht J, Lotz M. Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. J Clin Invest 1996;98:2425-30.
33. Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 1999;96:3540-5.
34. Kirschnek S, Ying S, Fischer SF, et al. Phagocytosis-induced apoptosis in macrophages is mediated by up-regulation and activation of the Bcl-2 homology domain 3-only protein Bim. J Immunol 2005;174:671-9.
35. Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 1998;10:205-19.
36. Oltmanns U, Issa R, Sukkar MB, John M, Chung KF. Role of c-jun N-terminal kinase in the induced release of GM-CSF, RANTES and IL-8 from human airway smooth muscle cells. Br J Pharmacol 2003;139:1228-34.
37. Metzler B, Hu Y, Dietrich H, Xu Q. Increased expression and activation of stress-activated protein kinases/c-Jun NH(2)-terminal protein kinases in atherosclerotic lesions coincide with p53. Am J Pathol 2000;156:1875-86.
38. Wu SQ, Aird WC. Thrombin, TNF-alpha, and LPS exert overlapping but nonidentical effects on gene expression in endothelial cells and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005;289:H873-85.
39. Zhao M, Liu Y, Wang X, New L, Han J, Brunk UT. Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS 2002;110:458-68.
40. Feng Y, Schreiner GF, Chakravarty S, Liu DY, Joly AH. Inhibition of the mitogen activated protein kinase, p38 alpha, prevents proinflammatory cytokine induction by human adherent mononuclear leukocytes in response to lipid loading. Atherosclerosis 2001;158:331-8.
41. Lau LF, Nathans D. Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J 1985;4:3145-51.
42. Jay P, Berge-Lefranc JL, Marsollier C, Mejean C, Taviaux S, Berta P. The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene 1997;14:1753-7.
43. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189-206.
44. Yang GP, Lau LF. Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ 1991;2:351-7.
45. Wu KJ, Yee A, Zhu NL, Gordon EM, Hall FL. Characterization of differential gene expression in monkey arterial neointima following balloon catheter injury. Int J Mol Med 2000;6:433-40.
46. Hilfiker A, Hilfiker-Kleiner D, Fuchs M, et al. Expression of CYR61, an angiogenic immediate early gene, in arteriosclerosis and its regulation by angiotensin II. Circulation 2002;106:254-60.
47. Sigala F, Georgopoulos S, Papalambros E, et al. Heregulin, cysteine rich-61 and matrix metalloproteinase 9 expression in human carotid atherosclerotic plaques: relationship with clinical data. Eur J Vasc Endovasc Surg 2006;32:238-45.
48. Matsumae H, Yoshida Y, Ono K, et al. CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model. Arterioscler Thromb Vasc Biol 2008;28:1077-83.
49. Schutze N, Rucker N, Muller J, Adamski J, Jakob F. 5' flanking sequence of the human immediate early responsive gene ccn1 (cyr61) and mapping of polymorphic CA repeat sequence motifs in the human ccn1 (cyr61) locus. Mol Pathol 2001;54:170-5.
50. Hilfiker-Kleiner D, Kaminski K, Kaminska A, et al. Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 2004;109:2227-33.
51. Kim KH, Min YK, Baik JH, Lau LF, Chaqour B, Chung KC. Expression of angiogenic factor Cyr61 during neuronal cell death via the activation of c-Jun N-terminal kinase and serum response factor. J Biol Chem 2003;278:13847-54.
52. Binion DG, Heidemann J, Li MS, Nelson VM, Otterson MF, Rafiee P. Vascular Cell Adhesion Molecule-1 Expression in Human Intestinal Microvascular Endothelial Cells is Regulated by PI3K/Akt/MAPK/NF{kappa}B: Inhibitory Role of Curcumin. Am J Physiol Gastrointest Liver Physiol 2009.
53. Sukhatme VP, Cao XM, Chang LC, et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 1988;53:37-43.
54. Khachigian LM, Collins T. Early growth response factor 1: a pleiotropic mediator of inducible gene expression. J Mol Med 1998;76:613-6.
55. Topol EJ, Serruys PW. Frontiers in interventional cardiology. Circulation 1998;98:1802-20.
56. McCaffrey TA, Fu C, Du B, et al. High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest 2000;105:653-62.
57. Fahmy RG, Khachigian LM. Suppression of growth factor expression and human vascular smooth muscle cell growth by small interfering RNA targeting EGR-1. J Cell Biochem 2007;100:1526-35.
58. Bea F, Blessing E, Bennett B, Levitz M, Wallace EP, Rosenfeld ME. Simvastatin promotes atherosclerotic plaque stability in apoE-deficient mice independently of lipid lowering. Arterioscler Thromb Vasc Biol 2002;22:1832-7.
59. Lim CP, Jain N, Cao X. Stress-induced immediate-early gene, egr-1, involves activation of p38/JNK1. Oncogene 1998;16:2915-26.
60. Hoffmann E, Ashouri J, Wolter S, et al. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem 2008;283:12120-8.
61. Guha M, O'Connell MA, Pawlinski R, et al. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 2001;98:1429-39.
62. Mattila KJ, Valle MS, Nieminen MS, Valtonen VV, Hietaniemi KL. Dental infections and coronary atherosclerosis. Atherosclerosis 1993;103:205-11.
63. DeStefano F, Anda RF, Kahn HS, Williamson DF, Russell CM. Dental disease and risk of coronary heart disease and mortality. BMJ 1993;306:688-91.
64. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000;71:1554-60.
65. Cavrini F, Sambri V, Moter A, et al. Molecular detection of Treponema denticola and Porphyromonas gingivalis in carotid and aortic atheromatous plaques by FISH: report of two cases. J Med Microbiol 2005;54:93-6.
66. Han JS, Macarak E, Rosenbloom J, Chung KC, Chaqour B. Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. Eur J Biochem 2003;270:3408-21.
67. Grote K, Bavendiek U, Grothusen C, et al. Stretch-inducible expression of the angiogenic factor CCN1 in vascular smooth muscle cells is mediated by Egr-1. J Biol Chem 2004;279:55675-81.
68. Grzeszkiewicz TM, Lindner V, Chen N, Lam SC, Lau LF. The angiogenic factor cysteine-rich 61 (CYR61, CCN1) supports vascular smooth muscle cell adhesion and stimulates chemotaxis through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans. Endocrinology 2002;143:1441-50.
69. Silverman ES, Collins T. Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 1999;154:665-70.
70. Zhu X, Lin Y, Bacanamwo M, et al. Interleukin-1 beta-induced Id2 gene expression is mediated by Egr-1 in vascular smooth muscle cells. Cardiovasc Res 2007;76:141-8.
71. DeYulia GJ, Jr., Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW. Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A 2005;102:5044-9.
72. Sanlioglu S, Williams CM, Samavati L, et al. Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappa B. J Biol Chem 2001;276:30188-98.
73. Hwang D, Jang BC, Yu G, Boudreau M. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide: mediation through both mitogen-activated protein kinase and NF-kappaB signaling pathways in macrophages. Biochem Pharmacol 1997;54:87-96.
74. Mestre JR, Mackrell PJ, Rivadeneira DE, Stapleton PP, Tanabe T, Daly JM. Redundancy in the signaling pathways and promoter elements regulating cyclooxygenase-2 gene expression in endotoxin-treated macrophage/monocytic cells. J Biol Chem 2001;276:3977-82.
75. Zhang X, Cao J, Jiang L, Zhong L. Suppressive effects of hydroxytyrosol on oxidative stress and nuclear Factor-kappaB activation in THP-1 cells. Biol Pharm Bull 2009;32:578-82.
76. Sarkar D, Fisher PB. Molecular mechanisms of aging-associated inflammation. Cancer Lett 2006;236:13-23.
77. Carayol N, Chen J, Yang F, et al. A dominant function of IKK/NF-kappaB signaling in global lipopolysaccharide-induced gene expression. J Biol Chem 2006;281:31142-51.
78. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-74.
79. Barton M, Minotti R, Haas E. Inflammation and atherosclerosis. Circ Res 2007;101:750-1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42716-
dc.description.abstract根據行政院衛生署統計民國96年國人十大死因,心臟疾病與腦血管疾病分別位居第二及第三名,嚴重威脅國人健康。近年研究顯示細菌感染可能是血管發生病變的原因之一,其中牙周病亦與心血管疾病具密切相關性。 Porphyromonas gingivalis (P.g.)是造成牙周病的致病菌之一,文獻指出P.g.會隨血液在血管裡流動,出現在動脈硬化發生的區域。 最近研究發現,粥狀動脈硬化斑塊處有大量的Cyr61及Egr-1表現。Cyr61表現量的多寡與動脈硬化惡化程度呈正比,Cyr61及Egr-1 刪除鼠可以抑制粥狀動脈硬化動物模式的粥狀動脈硬化發生。 本研究探討P.g. 誘導Cyr61及Egr-1表現產生動脈硬化的可能性。 我們首先以1ug/ml P.g. 脂多醣( LPS)處理人類血管平滑肌細胞(VSMC) ,發現LPS會誘導Cyr61及Egr-1的蛋白與mRNA表現。在VSMC中ROS並非Cyr61及Egr-1的誘導來源,但利用Bay (NF-kB抑制劑)、PD98059、SP600125、SB203580(ERK、JNK、p38抑制劑) 及Epigallocatechin gallate (EGCG)前處理可阻斷P.g. LPS誘導的Cyr61蛋白表現。可見得MAPKs訊息傳遞路徑在VSMC誘導的Cyr61蛋白表現中扮演了重要活化角色。然而由P.g. LPS誘導的Egr-1蛋白表現只受到SP600125及curcumin (AP-1抑制劑)的抑制。在粥狀動脈硬化微環境中有大量吞噬細胞存在,因此我們以1ug/ml P.g. LPS處理人類單核球細胞株THP-1亦發現它會誘導Cyr61及Egr-1的蛋白與mRNA表現。以PD98059、SP600125、Bay、抗氧化劑N- acetylcysteine及EGCG前處理可阻斷LPS誘導的Cyr61蛋白表現。在Egr-1蛋白的部分與VSMC結果相同,Egr-1蛋白表現只受到SP600125及curcumin的抑制。本研究首次指出P.g. LPS可誘導血管平滑肌細胞及人類單核球細胞 Cyr61及Egr-1蛋白之表現。 其訊息傳遞路徑可能經由ROS及MAPKs路徑。冀望未來可以藉由抑制這些訊息傳遞路徑成員來抑制與牙周病相關的動脈硬化。zh_TW
dc.description.abstractAccording to the 2007 census of department of health, Executive Yuan, ROC, heart disease and cerebral vascular disease rank second and third among ten leading causes of death, respectively. Epidemiological studies have shown that periodontal disease is associated with increased risk for cardiovascular and cerebrovascular disease. With Porphyromonas gingivalis (P.g.) as the most important periodontal pathogen, this organism can accelerate atheroma deposition in animal models. However, the detail mechanism remains unknown. Previous studies have shown that Cyr61 and Egr-1 are highly expressed in human atherosclerotic plaques, correlating with the degree of stenosis and plaque histopathology. Inhibition of Cyr61 and Egr-1 gene expression reduces neointimal hyperplasia following balloon injury in rats. Here we show 1μg/ml P. g. LPS markedly induces Cyr61 and Egr-1 in mRNA and protein level in human vascular smooth muscle cell (VSMC) and human monocytic THP-1 cells. Pretreatment with NF-kB inhibitor Bay 11-7082, ERK inhibitor PD98059, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580 and antioxidant epigallocatechin gallate (EGCG) significantly reduced P. g. LPS-induced Cyr61 in human vascular smooth muscle cells (VSMC), whereas the induction of Egr-1 via P. g. LPS only affected by SP600125 and curcumin (AP-1 inhibitor). In THP-1 cells, pretreatment with ROS inhibitor NAC, Bay 11-7082, PD98059, SP600125 and EGCG significantly reduced P. g. LPS-induced Cyr61, but not SB203580. The induction of Egr-1 by P. g. LPS in THP-1 also affected by SP600125 and curcumin. In conclusion, our results provide the first evidence that chronic P.g. infection may contribute to atherogenesis through sustained upregulation of Cyr61 and Egr-1.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:20:42Z (GMT). No. of bitstreams: 1
ntu-98-R96450002-1.pdf: 2131657 bytes, checksum: 5fbbcf99419f7e01651198bc37a22bcc (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 1
Abstract 2
導論 3
第一節 牙周病(Periodontal Disease) 3
1-1 牙周病 3
1-2 牙周病的致病原因- 牙菌斑 3
1-3牙周病與口腔細菌及其致病機轉 4
第二節 動脈硬化(Atherosclerosis) 6
2-1動脈硬化流病學 6
2-2動脈硬化病理學 6
動脈硬化發生機轉 6
2-3動脈硬化的危險因子 8
2-4牙周病與心血管疾病相關性之流行病學證據 8
2-5牙周致病菌對心臟血管疾病之致病機轉 9
2-6牙周病、發炎和心血管疾病之間的關係 10
2-7 P. gingivalis與動脈硬化的關係 11
2-8脂多醣(lipopolysaccharide; LPS) 11
2-9氧化壓力(ROS)與動脈硬化 12
Mitogen-activated protein kinases 路徑 13
第三節 Cyr61(Cysteine-rich protein) 14
3-1 Cyr61的簡介 14
3-2 Cyr61與動脈硬化的關係 15
3-3 Cyr61訊息傳遞路徑及基因調控 15
第四節 Egr-1(Early Growth Response-1) 16
4-1 Egr-1的簡介 16
4-2 Egr-1與動脈硬化的關係 16
4-3 Egr-1訊息傳遞路徑及基因調控 17
實驗目的 18
實驗材料與方法 19
第一節 細胞株與細胞培養 19
第二節 藥物的處理 19
第三節 西方墨點法 20
第四節 RNA的萃取 23
第五節 RNA的反轉錄 23
第六節Real-Time PCR 24
第七節 利用Flow cytometry作活性氧自由基的測定 25
結果 26
P. gingivalis LPS會誘導人類血管平滑肌細胞VSMC中Cyr61及Egr-1 mRNA的表現…………………………………………………………………………..26
P. gingivalis LPS會誘導VSMC細胞中Cyr61及Egr-1蛋白的表現 26
MAPKs抑制劑可抑制VSMC細胞由P. gingivalis LPS所誘導的Cyr61及Egr-1 27
P. gingivalis LPS誘導VSMC細胞中Cyr61及Egr-1蛋白表現的訊息傳導路徑 27
P. gingivalis LPS會促進VSMC細胞中p38 MAPK、JNK及ERK磷酸化 28
P. gingivalis LPS會誘導人類單核球細胞株THP-1中Cyr61及Egr-1蛋白的表現 28
P. gingivalis LPS會誘導THP-1細胞株中Cyr61及Egr-1 mRNA表現 29
P. gingivalis LPS誘導THP-1細胞株中Cyr61及Egr-1蛋白表現的訊息傳導路徑 29
P. gingivalis LPS會促進THP-1細胞株中ERK及JNK磷酸化 30
NAC可抑制THP-1細胞株由P. gingivalis LPS所誘導的ERK及JNK 磷酸化 31
P. gingivalis LPS可誘導THP-1細胞株產生ROS 31
討論 33
圖 37
圖一、P.g. LPS會誘導VSMC細胞中Cyr61及Egr-1 mRNA 的表現 37
圖二、P.g. LPS誘導VSMC細胞Cyr61及Egr-1 表現的情形 38
圖三、在VSMC細胞中P.g. LPS對於Cyr61及Egr-1的誘導受到MAPKs的調控 39
圖四、LPS誘導VSMC細胞中Cyr61及Egr-1蛋白表現的訊息傳導路徑 40
圖五、在VSMC細胞中加入P.g. LPS會誘導p38、JNK及ERK的磷酸化 41
圖六、P.g. LPS誘導THP-1細胞Cyr61及Egr-1 表現的情形 42
圖七、P.g. LPS會誘導THP-1細胞中Cyr61及Egr-1 mRNA 的表現 43
圖八、P.g. LPS誘導THP-1細胞中Cyr61蛋白表現的訊息傳導路徑 44
圖九、P.g. LPS誘導THP-1細胞中Egr-1蛋白表現的訊息傳導路徑 45
圖十、P.g. LPS會促進THP-1細胞中ERK及JNK磷酸化 46
圖十一、在THP-1細胞中, P.g. LPS可能藉由刺激細胞產生ROS來活化ERK及JNK的表現 47
圖十二、P.g. LPS刺激THP-1細胞產生ROS 48
參考文獻 61
dc.language.isozh-TW
dc.title牙周致病菌 porphyromonas gingivalis在動脈硬化中誘導細胞表現Egr-1及Cyr61之機轉zh_TW
dc.titlePorphyromonas gingivalis induces vascular cells expression of Egr-1 and Cyr61 in atherosclerosisen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉謙美,呂炫?
dc.subject.keywordPorphyromonas gingivalis,動脈硬化,Cyr61,Egr-1,zh_TW
dc.subject.keywordPorphyromonas gingivalis,atherosclerosis,Cyr61,Egr-1,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved