請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42715完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱文英(Wen-Yen Chiu) | |
| dc.contributor.author | Jauder Jeng | en |
| dc.contributor.author | 鄭昭德 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:20:40Z | - |
| dc.date.available | 2009-07-31 | |
| dc.date.copyright | 2009-07-31 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-25 | |
| dc.identifier.citation | 1. Bechthold, N.; Landfester, K. Macromolecules 2000, 33, 4682-4689.
2. Odian, G. Principles of Polymerization 2004, 4th, ed., John Wiley & Sons, New York, p. 353. 3. Asua, J. M. Prog. Polym. Sci. 2002, 27, 1283-1346. 4. Landfester, K.; Bechthold, N.; Tiarks, F.; Antonietti, M. Macromolecules 1999, 32, 5222-5228. 5. Antonietti, M.; Landfester, K. Prog. Polym. Sci. 2002, 27, 689-757. 6. Capek, I.; Chern, C. S. Adv. Polym. Sci. 2001, 155, 101-165. 7. Chern, C. S.; Chen, T. J. Colloid Polym. Sci. 1997, 275, 546-554. 8. Huang, H.; Zhang, H.; Li, J.; Cheng, S.; Hu, F.; Tan, B. J. Appl. Polym. Sci. 1998, 68, 2029-2039. 9. Wang, S.; Poehlein, G. W.; Schork, F. J. J. Polym. Sci. Pol. Chem. 1997, 35, 595-603. 10. Lim, M. S.; Chen, H. J. Polym. Sci. Pol. Chem. 2000, 38, 1818-1827. 11. Miller, C. M.; Venkatesan, J.; Silebi, C. A.; Sudol, E. D.; EI-Aasser, M. S. J. Colloid Interface Sci. 1994, 162, 11-18. 12. Reimers, J. L.; Schork, F. J. J. Appl. Polym. Sci. 1996, 60, 251-262. 13. Chern, C. S.; Liou, Y. C.; Chen, T. J. Macromol. Chem. Phys. 1998, 199, 1315-1322. 14. Kabalnov, A. S.; Shchukin, E. D. Adv. Colloid Interface Sci. 1992, 38, 69-97. 15. Chern, C. S.; Chen, T. J. Colloid Surf. A-Physicochem. Eng. Asp. 1998, 138, 65-74. 16. Landfester, K.; Bechthold, N.; Forster, S.; Antonietti, M. Macromol. Rapid Commun. 1999, 20, 81-84. 17. Chern, C. S.; Liou, Y. C. Macromol. Chem. Phys. 1998, 199, 2051-2061. 18. Chern, C. S.; Liou, Y. C. Polymer 1999, 40, 3763-3772. 19. Chern, C. S.; Chang, H. T. Polym. Int. 2002, 51, 1428-1438. 20. Douglas, S. J.; Illum, L.; Davis, S. S. J. Colloid Interface Sci. 1985, 103, 154-163. 21. Durand, A.; Dellacherie, E. Colloid Polym. Sci. 2006, 284, 536-545. 22. Marie, E.; Landfester, K.; Antonietti, M. Biomacromolecules 2002, 3, 475-481. 23. Yang, S. C.; Ge, H. X.; Hu, Y.; Jiang, X. Q.; Yang, C. Z. Colloid Polym. Sci. 2000, 278, 285-292. 24. Chern, C. S.; Lee, C. K.; Ho, C. C. J. Polym. Sci. Pol. Chem. 1999, 37, 1489-1499. 25. Chern, C. S.; Lee, C. K.; Ho, C. C. Colloid Polym. Sci. 1999, 277, 507-512. 26. Schulz, P. C.; Rodriguez, M. S.; Del Blanco, L. F.; Pistonesi, M.; Agullo, E. Colloid Polym. Sci. 1998, 276, 1159-1165. 27. Mun, S.; Decker, E. A.; McClements, D. J. Langmuir 2005, 21, 6228-6234. 28. Mun, S.; Decker, E. A.; McClements, D. J. J. Colloid Interface Sci. 2006, 296, 581-590. 29. Perrin, P.; Porcar, I.; Tribet, C. Polym. Int. 2003, 52, 465-470. 30. Patten, T. E.; Matyjaszewski, K. Adv. Mater. 1998, 10, 901-915. 31. Matyjaszewski, K.; Spanswick. J. Materials Today 2005, 8, 26-33. 32. Shipp, D. A. J. Macromol. Sci.-Polym. Rev. 2005, 45, 171-194. 33. Cardi, N.; Garbassi, F.; Laus, M.; Po, R.; Sparnacci, K. Polymer News 2005, 30, 110-119. 34. Goto, A.; Fukuda, T. Prog. Polym. Sci. 2004, 29, 329-385. 35. Li, G.; Fan, J.; Jiang, R.; Gao, Y. Chem. Mat. 2004, 16, 1835-1837. 36. Karanam, S.; Goossens, H.; Klumperman, B.; Lemstra, P. Macromolecules 2003, 36, 3051-3060. 37. Ramakrishnan, A.; Dhamodharan, R. Macromolecules 2003, 36, 1039-1046. 38. Raghunadh, V.; Baskaran, D.; Sivaram, S. Polymer 2004, 45, 3149-3155. 39. Li, M.; Matyjaszewski, K. Macromolecules 2003, 36, 6028-6035. 40. Jousset, S.; Qiu, J.; Matyjaszewski, K. Macromolecules 2001, 34, 6641-6648. 41. Qiu, J.; Pintauer, T.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 2000, 33, 7310-7320. 42. Gaynor, S. G.; Qiu, J.; Matyjaszewski, K. Macromolecules 1998, 31, 5951-5954. 43. Chong, Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H. Macromolecules 2003, 36, 2256-2272. 44. Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H. Macromolecules 2003, 36, 2273-2283. 45. Yang, L.; Luo, Y.; Li, B. Polymer 2006, 47, 751-762. 46. Shim, S. E.; Lee, H.; Choe, S. Macromolecules 2004, 37, 5565-5571. 47. Lansalot, M.; Davis, T. P.; Heuts, J. P. A. Macromolecules 2002, 35, 7582-7591. 48. Prescott, S. W.; Ballard, M. J.; Rizzardo, E.; Gilbert, R. G. Macromolecules 2005, 38, 4901-4912. 49. Butte´, A.; Storti, G.; Morbidelli, M. Macromolecules 2001, 34, 5885-5896. 50. Miura, Y.; Narumi, A.; Matsuya, S.; Satoh, T.; Duan, Q.; Kaga, H.; Kakuchi, T. J. Polym. Sci. Pol. Chem. 2005, 43, 4271-4279. 51. Lin, M.; Hsu, J. C. C.; Cunningham, M. F. J. Polym. Sci. Pol. Chem. 2006, 44, 5974-5986. 52. Ma, J. W.; Cunningham, M. F.; McAuley, K. B.; Keoshkerian, B.; Georges, M. K. J. Polym. Sci. Pol. Chem. 2001, 39, 1081-1089. 53. Nakamura, T.; Zetterlund, P. B.; Okubo, M. Macromol. Rapid Commun. 2006, 27, 2014-2018. 54. Pan, G.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. Macromolecules 2002, 35, 6915-6919. 55. Cunningham, M. F.; Xie, M.; McAuley, K. B.; Keoshkerian, B.; Georges, M. K. Macromolecules 2002, 35, 59-66. 56. Keoshkerian, B.; MacLeod, P. J.; Georges, M. K. Macromolecules 2001, 34, 3594-3599. 57. Pan, G.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. Macromolecules 2001, 34, 481-488. 58. Farcet, C.; Lansalot, M.; Charleux, B.; Pirri, R.; Vairon, J. P. Macromolecules 2000, 33, 8559-8570. 59. Cunningham, M.; Lin, M.; Buragina, C.; Milton, S.; Ng, D.; Hsu, C. C.; Keoshkerian, B. Polymer 2005, 46, 1025-1032. 60. Cunningham, M. F. Prog. Polym. Sci. 2002, 27, 1039-1067. 61. Cunningham, M. F.; Ng, D. C. T.; Milton, S. G.; Keoshkerian, B. J. Polym. Sci. Pol. Chem. 2006, 44, 232-242. 62. Alduncin, J. A.; Forcada, J.; Asua, J. M. Macromolecules 1994, 27, 2256-2261. 63. Landfester, K.; Bechthold, N.; Tiarks, F.; Antonietti, M. Macromolecules 1999, 32, 2679-2683. 64. Lide, D. R. Handbook of Chemistry and Physics 2002 ~ 2003, 83RD ed., CRC press, New York, p. 8-97. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42715 | - |
| dc.description.abstract | 本研究深入探討迷你乳化聚合反應及其在活性自由基聚合反應與迷你乳化共聚合反應的應用。在迷你乳化聚合反應方面,研究內容記錄在第二與第三章,是深入研究共同安定劑與混合界面穩定劑對油滴形成機制、迷你乳液安定性與乳液顆粒成長機制等重要特性的效應,獲得以下五點結論:1) 隨著超音波震盪時間增加,油滴最初由很寬的粒徑分佈,逐漸達到穩定狀態,並且粒徑分佈轉變為較窄且單一的分佈;2) 較小的乳液顆粒來自於縮小油滴的油滴成核反應與二次成核反應;3) HD濃度高到足以有效延遲Ostwald ripening時,油滴成核反應佔優勢;4) HTMA濃度較高時,油滴成核反應佔優勢,因為界面穩定劑在顆粒表面的覆蓋率較高;5) Chitosan 100濃度較高時,二次成核反應無法忽略,因為界面穩定劑在顆粒表面的有效覆蓋率較低。在迷你乳化聚合反應的應用方面,研究內容記錄在第四章,是以TEMPO為媒介之苯乙烯的活性自由基迷你乳化聚合反應,反應條件是在90oC與環境壓力下,同時以半批次方式連續加入ascorbic水溶液。根據我們的調查,這是首次在環境壓力下,以TEMPO為媒介,進行活性迷你乳化聚合反應的研究,獲得以下四點結論:1) SDBS濃度愈高,顆粒表面的surface barrier愈密緻,因此反應速率愈慢;2) Ascorbic acid濃度愈高,TEMPO被消耗地愈快,因此反應速率愈快;3) 活性迷你乳化聚合反應主要是在顆粒的surface zone進行;4) 以總體聚合反應證實活性自由基迷你乳化聚合反應得到的產物具有活性。在迷你乳化共聚合反應的應用方面,研究內容記錄在附錄A,是以SDS與HD為界面穩定劑與共同安定劑,KPS為起始劑,在75oC或85oC,進行EHA、BA或MMA的迷你乳化共聚合反應,獲得安定的乳液,與傳統的乳化共聚合反應比較,迷你乳化共聚合反應的轉化率較高,反應產生的結塊殘渣較少,這可歸因於迷你乳化共聚合反應的獨特油滴成核機制,因此迷你乳化共聚合反應具有潛在優勢,可應用在工業生產。 | zh_TW |
| dc.description.abstract | Miniemulsion polymerization and its applications in nitroxide-mediated living radical polymerization and in miniemulsion copolymerization were studied. In miniemulsion polymerization, both effects of costabilizer and mixed surfactants on the formation mechanism of droplets, miniemulsion stability, and growth mechanism of latex particles were detailed in chapters 2 and 3. Five results were obtained. 1. With increasing ultrasonication time, miniemulsions showed an initially broad droplet size distribution (DSD) and later reached a critically stabilized state in which monodispersed DSD was obtained. 2. The enhanced increase in cumulative volume (CV) fraction of smaller latex particles was resulted from droplet nucleation of shrinking droplets, owing to Ostwald ripening, and secondary nucleation. 3. Droplet nucleation dominated when HD conc. was high enough to effectively retard Ostwald ripening. 4. For higher n-hexadecyl trimethyl ammonium chloride (HTMA) concentration, droplet nucleation dominated because of denser surface coverage on particles. 5. For higher concentration of chitosan 100, secondary nucleation could not be ruled out because of lower effective surface coverage on particles. In applications of the miniemulsion polymerization in nitroxide-mediated living radical polymerization, it was detailed in chapter 4. 2,2,6,6-Tetramethylpiperidinyl-1-oxy (TEMPO) was used as a nitroxide. TEMPO-mediated living miniemulsion polymerization of styrene with feeding an ascorbic aqueous solution at a constant feeding rate throughout the polymerization was performed at 90oC under ambient pressure. Based on the author's best knowledge, it was the first time that the TEMPO-mediated miniemulsion polymerization was performed under ambient pressure. Four results were achieved. 1. The higher the sodium dodecylbenzene sulfonate (SDBS) concentration, the denser the surface barrier on particles. Polymerization rate was thus slower. 2. The higher the concentration of ascorbic acid, the faster the TEMPO consumption. Polymerization rate was thus more rapid. 3. Living miniemulsion polymerization was primarily limited in surface zones of particles. 4. Livingness of polystyrene, resulted from the living miniemulsion polymerization, was identified by conducting bulk polymerization of chain extension. In the application of the miniemulsion copolymerization, the miniemulsion copolymerization, stabilized by SDS and HD, initiated by KPS, and conducted at 75 or 85oC in the presence of EHA, BA, or MMA comonomers, was evaluated in appendix A. Stable latex with low Tg of copolymer was produced. The latex exhibited higher conversion, low content of scrap, and well controlled composition in latex particles than those of conventional emulsion copolymerization. It was attributed to the unique mechanism of droplet nucleation in the miniemulsion copolymerization. Therefore, the miniemulsion copolymerization was a promising route in industrial production. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:20:40Z (GMT). No. of bitstreams: 1 ntu-98-D91549002-1.pdf: 2984286 bytes, checksum: 3cbd380ab2508efc6270097f253d9f5b (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書.…………..…………………………………………………….……i
致謝……….....…………..……………………………………...…………………......ii 摘要…………...…………..……………………………………………………...…......iii Abstract……..……...……………….........……………………………………………...vi Nomenclature…………………………….…………………………………………….-5- Chemical structures…………………………………………………………………….-8- Table Legend…….…………………………………………………………………...-12- Figure Caption……...………………………………………………………………...-14- Chapter 1 Introduction..……...………………………...………………………………...1 1.1. Influences of costabilizer on miniemulsion stability……..……….…………...2 1.2. Influences of costabilizer on nucleation mechanism…………………………..5 1.3. Influences of surfactant………………………………………………………..6 1.4. Application: controlled/ living radical miniemulsion polymerization………...7 1.5. References………………….………………………………………………….9 Chapter 2 Influence of hexadecane on droplet formation and growth of latex particles in methyl methacrylate miniemulsion……………...………………………………..16 2.1. Introduction……………………………………………………...…………...16 2.2. Experimental…………………………………………………………………18 2.2.1. Chemicals……………………………………………..……………………18 2.2.2. Preparation of MMA miniemulsions……………………………………….19 2.2.3. Polymerization of MMA miniemulsions………………..………………….20 2.2.4. Analytical methods…………………………………………………………21 2.3. Results and discussion………………………………………………………..22 2.3.1. Effect of HD concentration on size distribution of monomer droplets…….22 2.3.2. Effect of HD concentration on growth of latex particles…………………...25 2.4. Conclusions…………………………………………………………………..29 2.5. References…………………………………………………………………....30 Chapter 3 Effect of cationic surfactant on homogenization and polymerization of methyl methacrylate miniemulsion modified by chitosan……………………………...…42 3.1. Introduction...………………………………………...………………………42 3.2. Experimental…………………………………………………………………43 3.2.1. Materials……………………………………………………………………44 3.2.2. Preparation of MMA miniemulsion.……………………………………….44 3.2.3. Polymerization of MMA miniemulsion……………………………………45 3.2.4. Analytical methods…………………………………………………………45 3.3. Results and discussion………………………………………………………..47 3.3.1. Effect of HTMA concentration on DSD…………………………………...47 3.3.2. Effect of concentration of chitosan 100 on DSD…………..…………...….48 3.3.3. Effect of HTMA concentration on growth of latex particles………………50 3.3.4. Effect of concentration of chitosan 100 on growth of latex particles……...53 3.3.5. Effect of molecular weight of chitosan…………………………………….54 3.4. Conclusions……………………………………..……………………………55 3.5. References……………………………………………………………………56 Chapter 4 TEMPO-mediated miniemulsion polymerization of styrene under ambient pressure in a semi-batch process…………………………………………….……76 4.1. Introduction...………………………………………...………………………76 4.2. Experimental……………………………………………………………...…..80 4.2.1. Chemicals………………………………………………….……………….80 4.2.2. TEMPO-mediated miniemulsion polymerization of styrene in a semi-batch process……………………………………………………………………………...…..81 4.2.2.1. Preparation of TEMPO-terminated oligomer of polystyrene solution...…81 4.2.2.2. Preparation of miniemulsion………………….………………………….82 4.2.2.3. TEMPO-mediated miniemulsion polymerization………………………..83 4.2.3. Styrene miniemulsion polymerization in a batch process………………….84 4.2.3.1. Miniemulsion preparation……………………………...…………………84 4.2.3.2. Miniemulsion polymerization…………………………….………………84 4.2.4. Chain extension of polystyrene………………………………….…………85 4.2.5. Characterization………………………………...…………………………..86 4.3. Results and discussion………………………………………………………..88 4.3.1. Determination of polymerization temperature under ambient pressure…....88 4.3.2. Miniemulsion stability…………………………………………..………….88 4.3.3. TEMPO-mediated miniemulsion polymerization with continuous feeding ascorbic aqueous solution…………………………………………………………...….89 4.3.4. Mechanism of shell polymerization with continuous feeding ascorbic aqueous solution………………………………………………………………………..90 4.3.5. Effect of concentration of ascorbic acid on polymerization rate………..….93 4.3.6. Effect of SDBS and ascorbic acid on kinetics in TEMPO-mediated miniemulsion polymerization in a semi-batch process…………………………………96 4.3.7. Evolution of molecular weights of growing chains……………………...…98 4.3.8. Chain extension of polystyrene………………………...…………………102 4.3.9. Synthesis of polystyrene with unimodal molecular weight distribution via TEMPO-mediated miniemulsion polymerization in a batch process……………...….103 4.4. Conclusions………………………………………………………...……….104 4.5 References…………………………….……………………………………..106 Chapter 5 Summary…………………………………………………………………...145 Chapter 6 Future work and suggestion……………………...………………………...147 Appendix A An elementary evaluation of miniemulsion copolymerization in application in industrial production…………………….................................................…….148 A.1. Abstract...…………………………………...……………………………....148 A.2. Introduction...…………………………………...………………………..…148 A.3. Experimental………...………………………………………..………….....149 A.3.1. Chemicals……...………………………………………………………....149 A.3.2. Preparation and miniemulsion copolymerization………………………...150 A.3.3. Analytical methods………...………………………………………..……150 A.4. Results and discussion…………...……………………………………...….152 A.4.1. Miniemulsion copolymerization………...…………...…………………...152 A.4.2. Test of latex samples…………...………………………………………...154 A.5. Conclusions…………………………………………………………………155 A.6. References…………………………………………………………………..155 Appendix B Why was CV fraction used in expressing DSD?…..............…….……...161 Appendix C Author introduction and publications……………………………………164 | |
| dc.language.iso | en | |
| dc.subject | 迷你乳液 | zh_TW |
| dc.subject | 環境壓力 | zh_TW |
| dc.subject | 半批次製程 | zh_TW |
| dc.subject | ascorbic acid | zh_TW |
| dc.subject | 活性迷你乳化聚合反應 | zh_TW |
| dc.subject | chitosan | zh_TW |
| dc.subject | Ostwald ripening | zh_TW |
| dc.subject | miniemulsion | en |
| dc.subject | ambient pressure | en |
| dc.subject | semi-batch process | en |
| dc.subject | ascorbic acid | en |
| dc.subject | living miniemulsion polymerization | en |
| dc.subject | chitosan | en |
| dc.subject | Ostwald ripening | en |
| dc.title | 迷你乳化聚合反應及其在活性自由基聚合反應之應用的研究 | zh_TW |
| dc.title | Studies on Miniemulsion Polymerization and Their Applications in TEMPO-mediated Radical Polymerization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 王立義(Lee-Yih Wang),戴子安(Chi-An Dai) | |
| dc.contributor.oralexamcommittee | 林金福(King-Fu Lin),陳崇賢(Chorng-Shyan Chern),邱顯堂(Hsien-Tang Chiu),李佳芬(Chia-Fen Lee) | |
| dc.subject.keyword | 迷你乳液,Ostwald ripening,chitosan,活性迷你乳化聚合反應,ascorbic acid,半批次製程,環境壓力, | zh_TW |
| dc.subject.keyword | miniemulsion,Ostwald ripening,chitosan,living miniemulsion polymerization,ascorbic acid,semi-batch process,ambient pressure, | en |
| dc.relation.page | 166 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
