Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝(Feng-Huei Lin)
dc.contributor.authorSiow-Tung Looen
dc.contributor.author羅朝棟zh_TW
dc.date.accessioned2021-06-15T01:20:01Z-
dc.date.available2014-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-25
dc.identifier.citationReferences
1. Malfait, A.M., et al., Inhibition of ADAM-TS4 and ADAM-TS5 prevents
aggrecan degradation in osteoarthritic cartilage. J Biol Chem, 2002. 277(25): p.
22201-8.
2. Strauss, E.J., et al., Hyaluronic Acid Viscosupplementation and Osteoarthritis:
Current Uses and Future Directions. Am J Sports Med, 2009. Feb 3. [Epub
ahead of print].
3. Friesen, J.A. and V.W. Rodwell, The 3-hydroxy-3-methylglutaryl
coenzyme-A (HMG-CoA) reductases. Genome Biol, 2004. 5(11): p. 248.
4. Corsini, A., et al., New insights into the pharmacodynamic and
pharmacokinetic properties of statins. Pharmacol Ther, 1999. 84(3): p. 413-28.
5. Hatano, H., et al., Statin stimulates bone morphogenetic protein-2, aggrecan,
and type 2 collagen gene expression and proteoglycan synthesis in rat
chondrocytes. J Orthop Sci, 2003. 8(6): p. 842-8.
6. Akasaki, Y., et al., Mevastatin reduces cartilage degradation in rabbit
experimental osteoarthritis through inhibition of synovial inflammation.
Osteoarthritis Cartilage, 2009. 17(2): p. 235-43.
7. Pelletier, J.P., J. Martel-Pelletier, and S.B. Abramson, Osteoarthritis, an
inflammatory disease: potential implication for the selection of new
therapeutic targets. Arthritis Rheum, 2001. 44(6): p. 1237-47.
8. Wieland, H.A., et al., Osteoarthritis - an untreatable disease? Nat Rev Drug
Discov, 2005. 4(4): p. 331-44.
9. Moskowitz, R.W., Osteoarthritis cartilage histopathology: grading and staging.
Osteoarthritis Cartilage, 2006. 14(1): p. 1-2.
10. Moskowitz, R.W., Osteoarthritis : diagnosis and medical/surgical management.Wilkins. xviii, 470 p.
11. Abramson, S.B., M. Attur, and Y. Yazici, Prospects for disease modification
in osteoarthritis. Nat Clin Pract Rheumatol, 2006. 2(6): p. 304-12.
12. Goldring, M.B. and S.R. Goldring, Osteoarthritis. J Cell Physiol, 2007. 213(3):
p. 626-34.
13. Zhang, W., A. Jones, and M. Doherty, Does paracetamol (acetaminophen)
reduce the pain of osteoarthritis? A meta-analysis of randomised controlled
trials. Ann Rheum Dis, 2004. 63(8): p. 901-7.
14. Furst, D.E., Are there differences among nonsteroidal antiinflammatory drugs?
Comparing acetylated salicylates, nonacetylated salicylates, and nonacetylated
nonsteroidal antiinflammatory drugs. Arthritis Rheum, 1994. 37(1): p. 1-9.
15. Cannon, G.W., et al., Rofecoxib, a specific inhibitor of cyclooxygenase 2,
with clinical efficacy comparable with that of diclofenac sodium: results of a
one-year, randomized, clinical trial in patients with osteoarthritis of the knee
and hip. Rofecoxib Phase III Protocol 035 Study Group. Arthritis Rheum,
2000. 43(5): p. 978-87.
16. Frampton, J.E. and G.M. Keating, Celecoxib: a review of its use in the
management of arthritis and acute pain. Drugs, 2007. 67(16): p. 2433-72.
17. Seidenberg, B.C., COX-2 inhibitors. Lancet, 1999. 353(9168): p. 1978.
18. Hawkey, C., et al., Comparison of the effect of rofecoxib (a cyclooxygenase 2
inhibitor), ibuprofen, and placebo on the gastroduodenal mucosa of patients
with osteoarthritis: a randomized, double-blind, placebo-controlled trial. The
Rofecoxib Osteoarthritis Endoscopy Multinational Study Group. Arthritis
Rheum, 2000. 43(2): p. 370-7.
19. Fitzgerald, G.A., Coxibs and cardiovascular disease. N Engl J Med, 2004.351(17): p. 1709-11.
20. Leopold, S.S., et al., Corticosteroid compared with hyaluronic acid injections for the treatment of osteoarthritis of the knee. A prospective, randomized trial.
J Bone Joint Surg Am, 2003. 85-A(7): p. 1197-203.
21. Bellamy, N., et al., Viscosupplementation for the treatment of osteoarthritis of
the knee. Cochrane Database Syst Rev, 2005(2): p. CD005321.
22. Wobig, M., et al., Viscosupplementation with hylan G-F 20: a 26-week controlled trial of efficacy and safety in the osteoarthritic knee. Clin Ther,1998. 20(3): p. 410-23.
23. Altman, R.D. and R. Moskowitz, Intraarticular sodium hyaluronate (Hyalgan) in the treatment of patients with osteoarthritis of the knee: a randomized clinical trial. Hyalgan Study Group. J Rheumatol, 1998. 25(11): p. 2203-12.
24. Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. American College of Rheumatology Subcommittee on
Osteoarthritis Guidelines. Arthritis Rheum, 2000. 43(9): p. 1905-15.
25. Steadman, J.R., W.G. Rodkey, and J.J. Rodrigo, Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res,
2001(391 Suppl): p. S362-9.
26. Jay, G.D., et al., Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res, 2001. 19(4): p. 677-87.
27. Rhee, D.K., et al., The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest, 2005. 115(3): p.622-31.
28. Simon, T.M. and D.W. Jackson, Articular cartilage: injury pathways and treatment options. Sports Med Arthrosc, 2006. 14(3): p. 146-54.
29. Friedlaender, G.E., V.M. Goldberg, and National Institute of Arthritis and
Musculoskeletal and Skin Diseases (U.S.), Bone and cartilage allografts :
biology and clinical applications. 1991, Park Ridge, IL: American Academy of
Orthopaedic Surgeons. p.123-154.
30. Harris, E.D. and W.N. Kelley, Kelley's textbook of rheumatology. 7th ed.
2005, Philadelphia: Elsevier Saunders. p50-81.
31. Ruiz-Romero, C., M.J. Lopez-Armada, and F.J. Blanco, Proteomic
characterization of human normal articular chondrocytes: a novel tool for the
study of osteoarthritis and other rheumatic diseases. Proteomics, 2005. 5(12):
p. 3048-59.
32. Lee, R.B., et al., The effect of mechanical stress on cartilage energy
metabolism. Biorheology, 2002. 39(1-2): p. 133-43.
33. Buckwalter, J.A. and H.J. Mankin, Articular cartilage: tissue design and
chondrocyte-matrix interactions. Instr Course Lect, 1998. 47: p. 477-86.
34. Maroudas, A., Physicochemical properties of cartilage in the light of ion
exchange theory. Biophys J, 1968. 8(5): p. 575-95.
35. Lodish, H.F., Molecular cell biology. 5th ed. 2004, New York: W.H. Freeman.
xxxiii, p. 973.
36. Moreland, L.W., Intra-articular hyaluronan (hyaluronic acid) and hylans for
the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther, 2003.
5(2): p. 54-67.
37. Ballock, R.T., et al., Regulation of the expression of the type-II collagen gene
in periosteum-derived cells by three members of the transforming growth
factor-beta superfamily. J Orthop Res, 1997. 15(3): p. 463-7.
38. Brandes, M.E., et al., Transforming growth factor beta 1 suppresses acute and chronic arthritis in experimental animals. J Clin Invest, 1991. 87(3): p.1108-13.
39. Moulharat, N., et al., Effects of transforming growth factor-beta on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro. Osteoarthritis Cartilage, 2004. 12(4): p. 296-305.
40. Imamura, T., et al., Smad6 inhibits signalling by the TGF-beta superfamily. Nature, 1997. 389(6651): p. 622-6.
41. Nakao, A., et al., Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, 1997. 389(6651): p. 631-5.
42. Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth Factors, 2004. 22(4): p. 233-41.
43. Rountree, R.B., et al., BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol, 2004. 2(11): p. e355.
44. Soder, S., et al., Antisense inhibition of osteogenic protein 1 disturbs human articular cartilage integrity. Arthritis Rheum, 2005. 52(2): p. 468-78.
45. Chubinskaya, S. and K.E. Kuettner, Regulation of osteogenic proteins by chondrocytes. Int J Biochem Cell Biol, 2003. 35(9): p. 1323-40.
46. Massague, J., J. Seoane, and D. Wotton, Smad transcription factors. Genes Dev, 2005. 19(23): p. 2783-810.
47. Kimura, N., et al., BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem, 2000. 275(23): p. 17647-52.
48. Pera, E.M., et al., Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev, 2003. 17(24): p. 3023-8.
49. Pollak, M.N., E.S. Schernhammer, and S.E. Hankinson, Insulin-like growth factors and neoplasia. Nat Rev Cancer, 2004. 4(7): p. 505-18.
50. Luyten, F.P., et al., Insulin-like growth factors maintain steady-statemetabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys, 1988. 267(2): p. 416-25.
51. Fernihough, J.K., et al., Local disruption of the insulin-like growth factor system in the arthritic joint. Arthritis Rheum, 1996. 39(9): p. 1556-65.
52. Tavera, C., et al., IGF and IGF-binding protein system in the synovial fluid of osteoarthritic and rheumatoid arthritic patients. Osteoarthritis Cartilage, 1996.4(4): p. 263-74.
53. Smeets, R.L., et al., A novel role for suppressor of cytokine signaling 3 in cartilage destruction via induction of chondrocyte desensitization toward insulin-like growth factor. Arthritis Rheum, 2006. 54(5): p. 1518-28.
54. Murakami, S., et al., Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1113-8.
55. Shimoaka, T., et al., Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem, 2002. 277(9): p. 7493-500.
56. Au, A., et al., Evaluation of thermoreversible polymers containing fibroblast growth factor 9 (FGF-9) for chondrocyte culture. J Biomed Mater Res A, 2004.
69(2): p. 367-72.
57. van den Berg, W.B., Uncoupling of inflammatory and destructive mechanisms in arthritis. Semin Arthritis Rheum, 2001. 30(5 Suppl 2): p. 7-16.
58. Shlopov, B.V., M.L. Gumanovskaya, and K.A. Hasty, Autocrine regulation of collagenase 3 (matrix metalloproteinase 13) during osteoarthritis. Arthritis
Rheum, 2000. 43(1): p. 195-205.
59. Alvaro-Gracia, J.M., et al., Cytokines in chronic inflammatory arthritis. VI. Analysis of the synovial cells involved in granulocyte-macrophage colony stimulating factor production and gene expression in rheumatoid
arthritis and its regulation by IL-1 and tumor necrosis factor-alpha. J Immunol, 1991. 146(10): p. 3365-71.
60. Husby, G. and R.C. Williams, Jr., Synovial localization of tumor necrosis factor in patients with rheumatoid arthritis. J Autoimmun, 1988. 1(4): p. 363-71.
61. Fan, Z., et al., Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic
stimulation with interleukin-1beta. Arthritis Rheum, 2005. 52(1): p. 136-43.
62. Goldring, M.B. and F. Berenbaum, The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res, 2004(427 Suppl): p. S37-46.
63. Blanco, F.J., et al., Chondrocyte apoptosis induced by nitric oxide. Am J Pathol, 1995. 146(1): p. 75-85.
64. Notoya, K., et al., The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol, 2000. 165(6): p. 3402-10.
65. Del Carlo, M., Jr. and R.F. Loeser, Nitric oxide-mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum, 2002. 46(2): p. 394-403.
66. Kuhn, K., S. Hashimoto, and M. Lotz, IL-1 beta protects human chondrocytes from CD95-induced apoptosis. J Immunol, 2000. 164(4): p. 2233-9.
67. Fan, Z., et al., IL-1beta induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK, p38 and NFkappaB signaling pathways. Cytokine, 2004. 28(1): p. 17-24.
68. Rowan, A.D., et al., Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. Arthritis
Rheum, 2001. 44(7): p. 1620-32.
69. Guerne, P.A., et al., Effects of IL-6 and its soluble receptor on proteoglycan synthesis and NO release by human articular chondrocytes: comparison with IL-1. Modulation by dexamethasone. Matrix Biol, 1999. 18(3): p. 253-60.
70. Tetlow, L.C., D.J. Adlam, and D.E. Woolley, Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum, 2001. 44(3): p. 585-94.
71. Nagase, H. and J.F. Woessner, Jr., Matrix metalloproteinases. J Biol Chem, 1999. 274(31): p. 21491-4.
72. Cawston, T.E. and A.J. Wilson, Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol, 2006. 20(5): p. 983-1002.
73. Borden, P., et al., Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem, 1996. 271(38): p. 23577-81.
74. Sandy, J.D., et al., Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem, 1991. 266(14): p. 8683-5.
75. Cal, S., et al., Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene, 2002. 283(1-2): p. 49-62.
76. Glasson, S.S., et al., Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum, 2004. 50(8): p. 2547-58.
77. Stanton, H., et al., ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature, 2005. 434(7033): p. 648-52.
78. Flannery, C.R., et al., Expression of ADAMTS homologues in articular cartilage. Biochem Biophys Res Commun, 1999. 260(2): p. 318-22.
79. Hashimoto, M., et al., Molecular network of cartilage homeostasis and osteoarthritis. Med Res Rev, 2008. 28(3): p. 464-81.
80. Goldring, M.B., Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol, 2006. 20(5): p. 1003-25.
81. Mercurio, F. and A.M. Manning, Multiple signals converging on NF-kappaB. Curr Opin Cell Biol, 1999. 11(2): p. 226-32.
82. Barnes, P.J. and M. Karin, Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med, 1997. 336(15): p. 1066-71.
83. Vincenti, M.P. and C.E. Brinckerhoff, Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors.
Arthritis Res, 2002. 4(3): p. 157-64.
84. Forsyth, C.B., et al., Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli. J
Gerontol A Biol Sci Med Sci, 2005. 60(9): p. 1118-24.
85. Agarwal, S., et al., A central role for the nuclear factor-kappaB pathway in anti-inflammatory and proinflammatory actions of mechanical strain. FASEB J, 2003. 17(8): p. 899-901.
86. Deschner, J., et al., Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care, 2003. 6(3): p. 289-93.
87. Endo, A., M. Kuroda, and K. Tanzawa, Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett, 1976. 72(2): p. 323-6.
88. Sacks, F.M., et al., The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med, 1996. 335(14): p.
1001-9.
89. Downs, J.R., et al., Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA, 1998. 279(20): p. 1615-22.
90. Roman-Blas, J.A. and S.A. Jimenez, NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage, 2006.14(9): p. 839-48.
91. Ogunwobi, O.O. and I.L. Beales, Statins inhibit proliferation and induce apoptosis in Barrett's esophageal adenocarcinoma cells. Am J Gastroenterol,2008. 103(4): p. 825-37.
92. Saito, A., et al., Simvastatin inhibits growth via apoptosis and the induction of cell cycle arrest in human melanoma cells. Melanoma Res, 2008. 18(2): p.85-94.
93. Luan, Z., A.J. Chase, and A.C. Newby, Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol, 2003. 23(5): p. 769-75.
94. Cevik, C., et al., Effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition on serum matrix metalloproteinase-13 and tissue inhibitor matrix
metalloproteinase-1 levels as a sign of plaque stabilization. J Cardiovasc Med (Hagerstown), 2008. 9(12): p. 1274-8.
95. Goldstein, J.L. and M.S. Brown, Regulation of the mevalonate pathway. Nature, 1990. 343(6257): p. 425-30.
96. Liao, J.K., Effects of statins on 3-hydroxy-3 methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am J Cardiol,2005. 96(5A): p. 24F-33F.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42695-
dc.description.abstract關節內注射玻尿酸是目前臨床上針對退化性關節炎常用的一種治療。降血脂藥物施德丁近年來被發現具有多效作用,例如:抗發炎反應與減低基質降解酶之表現。本論文的目的為探討玻尿酸與施德丁於體外退化性關節炎模式之治療作用。我們將 0.1mg/ml 的玻尿酸(臨床等級:雅節)混合不同濃度(5μM, 10μM, and 50μM)的新伐他丁(脂溶性)或普伐他丁(水溶性),然後作用於受脂多醣體(內毒素)誘導發炎及細胞凋亡反應的猪軟骨細胞。我們所進行的檢測分析包含有:施德丁之細胞毒性、細胞增殖、NF-κB 轉錄因子活性、一氧化氮釋放量、DNA 片斷化以及IL-1β、TNF-α、IL-6、iNOS、Caspase 3、MMP-1、MMP-13、COL2A1 的基因表現量。我們發現雖然玻尿酸混合50μM 之新伐他丁(H50S)可以有效降低IL-1β、 IL-6、iNOS、caspase 3、MMP-1、MMP-13 的基因表現。但它卻具有細胞毒性以及有抑制細胞增殖的作用。綜合所有結果,我們認為玻尿酸混合50μM 之普伐他丁(H50P)為最具有治療效果的組合。經結果分析得知它能有效的抑制NF-κB 轉錄因子的活性、降低一氧化氮的產生量、降低IL-1β、TNF-α、IL-6、iNOS、caspase 3、MMP-1、MMP-13 的基因表現量。因此,我們認為玻尿酸混合施德丁作為關節內注射劑有可能可以應用於減輕退化性關節炎之症狀。zh_TW
dc.description.abstractIntra-articular therapy with hyaluronic acid (HA) is commonly used in osteoarthritis treatment. Lipid-lowering drug statins have been shown to have pleiotropic effects such as anti-inflammatory and reduces matrix-degrading enzymes expression. The objective of this study is to examine the therapeutic effects of statin and hyaluronic acid within an in vitro osteoarthritis model. 0.1mg/ml of HA (ARTZ Dispo®) in combination with different doses (5μM, 10μM, and 50μM) of simvastatin (lipophilic) or pravastatin
(hydrophilic) were treated to LPS-induced inflammation and apoptosis in porcine articular chondrocyes. We evaluated cytotoxicity, cell proliferation, NF-κB activity, NO
production, DNA fragmentation, and gene expression of IL-1β, TNF-α, IL-6, iNOS, caspase 3, MMP-1, MMP-13, and COL2A1. Although results showed that the expression
of IL-1β, IL-6, iNOS, caspase 3, MMP-1, and MMP-13 were found significantly decreased when treated with HA in combination with 50μM simvastatin (H50S). However, simvastatin shown to have cytotoxicity effect and inhibits cell proliferation. Base on our findings, HA in combination with 50μM of pravastatin (H50P) appear to have the greatest therapeutics effects. It had shown to have suppress NF-κB activity,reduce NO production, and attenuate IL-1β, TNF-α, IL-6, iNOS, caspase 3, MMP-1, and
MMP-13mRNA expression. Therefore, we suggest that intra articular injection of HA in combination with statin may be feasible for relieve symptoms of knee osteoarthritis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:20:01Z (GMT). No. of bitstreams: 1
ntu-98-R96548051-1.pdf: 2194761 bytes, checksum: 1279984997ff5df01d2eaebf5ddad0a6 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTABLE OF CONTENTS
口試委員會審定書.........................................................I
誌謝.................................................................................................................................... II
中文摘要............................................................................................................................III
Abstract ............................................................................................................................. IV
Table of Contents .............................................................................................................. VI
List of Figures ................................................................................................................... IX
List of Tables ..................................................................................................................... XI
Chapter 1: Introduction ........................................................................................................1
1.1 Foreword ....................................................................................................................1
1.2 Pathogenesis of Osteoarthritis ....................................................................................3
1.3 Current Treatments ....................................................................................................7
1.4 Purpose of Study ......................................................................................................10
Chapter 2: Theorectical Basis .......................................................................................... 11
2.1 Articular Cartilage .................................................................................................... 11
2.1.1 Structure ............................................................................................................ 11
2.1.2 Compositions ....................................................................................................13
2.2 Anabolic and Catabolic Signal of Cartilage Homeostasis .......................................18
2.2.1 Anabolic Signals ...............................................................................................18
2.2.2 Catabolic Signals ..............................................................................................21
2.2.2.1 Proinflammatory cytokines ............................................................................21
2.2.2.2 Matrix degradation enzymes ..........................................................................22
2.3 Signal Transduction of Osteoarthritis – NF-κB pathway ........................................25
2.4 Statin ........................................................................................................................27
Chapter 3: Materials and Methods .....................................................................................31
3.1 Experimental Setup ..................................................................................................31
3.2 List of Materials and Devices ..................................................................................32
3.3 Primary Culture of Porcine Articular Cartilage .......................................................34
3.4 Assessment of Cytotoxicity of SImvastatin and Pravastatin – Lactate
dehydrogenase (LDH) assay ....................................................................................34
3.5 Determination of Cell Proliferation .........................................................................35
3.6 LPS-induced Cytotoxicty and Treatment of HA in Combination with Simvastatin or
Pravastatin ................................................................................................................37
3.7 Real-time Quantitative Polymerase Chain Reaction (PCR) ....................................38
3.8 Nitric Oxide Release Assay .....................................................................................39
3.9 Nuclear Protein Extraction .......................................................................................39
3.10 Quantification of Nuclear Protein ..........................................................................40
3.11 NF-κB p50 transcription factor assay ....................................................................40
3.12 TdT-mediated X-dUTP nick end labeling (TUNEL) assay ...................................41
3.13 Statistical Analysis .................................................................................................42
Chapter 4: Results
4.1 Cytotoxicity of Simvastatin and Pravastatin ............................................................43
4.2 Evaluation of Cell Proliferation ...............................................................................44
4.3 Assessment of Nitric Oxide (NO) Production .........................................................45
4.4 NF-κB activation ......................................................................................................46
4.5 Real-time Quantitative PCR ....................................................................................47
4.5.1 Effect of statin and HA on mRNA expression of proinflammatory cytokines
IL-1β, TNF-α and IL-6 ...........................................................................................47
4.5.2 Effect of statin and HA on mRNA expression of iNOS and Caspase ...............50
4.5.3 Effect of statin and HA on mRNA expression of MMPs and COL2A1 ...........51
4.6 TUNEL assay ...........................................................................................................54
Chapter 5: Discussion ........................................................................................................57
Chapter 6: Conclusions ......................................................................................................60
References ..........................................................................................................................61
LIST OF FIGURES
Chapter 1
Fig. 1.1 Potential mechanisms involved in the pathogenesis of osteoarthritis ....................5
Fig. 1.2 Molecular pathogenesis of OA ...............................................................................6
Fig. 1.3 Scheme of events involved in the initiation of osteoarthritis (OA) and
progression to irreversible cartilage damage .........................................................6
Fig. 1.4 Structure of Simvastatin and Pravastatin ..............................................................10
Chapter 2
Fig. 2.1 Main zones of articular cartilage organization .....................................................12
Fig. 2.2 Structure of collagen .............................................................................................16
Fig. 2.3 Molecular conformation of a typical proteoglycan aggregate showing size of the
molecule .............................................................................................................16
Fig. 2.4 Chemical Structure of Chondroitin-4-Sulfate (C4S), Chondroitin-6-Sulfate (C6S),
Dermatan Sulfate (DS) and Keratin Sulfate (KS) ..............................................17
Fig. 2.5 Chemical Structure of Hyaluronic Acid .............................................................17
Fig. 2.6 Anabolic and catabolic signaling factors affecting cartilage homeostasis ..........24
Fig. 2.7 Signalling pathways in chondrocytes ...................................................................25
Fig. 2.8 Schematic Diagram of NF-κB Activation ..........................................................29
Fig. 2.9 Cholesterol synthesis pathway..............................................................................29
Chapter 3
Fig. 3.1 Schematic illustration of the experimental setup ..................................................31
Fig. 3.2 Chemical reactions of LDH ..................................................................................35
Fig. 3.3 Chemical reaction of WST-1 ................................................................................36
Fig. 3.4. Schematic illustration of in situ end labeling ......................................................42
Fig. 4.1 Cytotoxicity of different concentrations of simvastatin (S) and pravastatin (P) on
chondrocytes. .......................................................................................................43
Fig. 4.2 Cell proliferation of chondrocytes with treatment of simvastatin (S) or
pravastatin (P). .....................................................................................................44
Fig. 4.3 Effect of statin (simvastatin or pravastatin) and in combination with or without
HA (0.1mg/ml) on chondrocyte NO release ........................................................45
Fig. 4.4 Effect of statin (simvastatin or pravastatin) and in combination with or without
HA (0.1mg/ml) on chondrocyte NF-κB p50 transcription factor DNA binding
activity. .................................................................................................................46
Fig. 4.5 Effect of statin (simvastatin or pravastatin) and in combination with or without
HA (0.1mg/ml) on chondrocyte (A) IL-1β, (B) TNF-α and (C) IL-6 mRNA
expression ............................................................................................................47
Fig. 4.6 Effect of statin (simvastatin or pravastatin) and in combination with or without
HA (0.1mg/ml) on chondrocyte (A) iNOS, (B) caspase 3 mRNA expression ....50
Fig. 4.7 Effect of statin (simvastatin or pravastatin) and in combination with or without
HA (0.1mg/ml) on chondrocyte (A) MMP-1, (B) MMP-13, and (C) COL2A1
mRNA expression ..............................................................................................51
Fig. 4.8 Effect of Statins and HA treatment on chondrocyte apoptosis .............................54
LIST OF TABLES
Table 1.1 Pharmacologic therapy for patients with osteoarthritis ........................................9
Table 2.1 Part list of NF-κB induced genes .......................................................................30
Table 2.2 Role of prenylated proteins in cellular functioning ............................................30
Table 3.1 Groups’ abbreviation and description ................................................................37
Table 3.2 List of TaqMan gene expression assays .....................................................38
dc.language.isoen
dc.subject玻&#63933zh_TW
dc.subject發炎反應zh_TW
dc.subject脂多醣體zh_TW
dc.subject軟骨細胞zh_TW
dc.subject退化性關節炎zh_TW
dc.subject施德丁zh_TW
dc.subject酸zh_TW
dc.subjectStatinen
dc.subjectInflammationen
dc.subjectLipopolysaccharideen
dc.subjectChondrocytesen
dc.subjectOsteoarthritisen
dc.subjectHyaluronic acid (HA)en
dc.title透明質酸與施德丁於脂多醣體誘發猪軟骨細胞發炎及細胞凋亡反應之作用研究zh_TW
dc.titleEffects of Hyaluronic Acid and Statins against LPS-induced Inflammation and Apoptosis in Porcine Articular Chondrocytesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張至宏(Chih-Hung Chang),方旭偉(Hsu-Wei Fang)
dc.subject.keyword玻&#63933,酸,施德丁,退化性關節炎,軟骨細胞,脂多醣體,發炎反應,zh_TW
dc.subject.keywordHyaluronic acid (HA),Statin,Osteoarthritis,Chondrocytes,Lipopolysaccharide,Inflammation,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved