請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42692完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清(Chien-Ching Ma) | |
| dc.contributor.author | Yi-Tzu Chen | en |
| dc.contributor.author | 陳依姿 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:19:55Z | - |
| dc.date.available | 2009-07-27 | |
| dc.date.copyright | 2009-07-27 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-25 | |
| dc.identifier.citation | Agarwal, B., P. C. Upadhyay, L. Banta, and D. Loyns, 2005, Transient Temperature Distribution in Composites with Layers of Functionally Graded Materials (FGMs). Journal of Reinforced Plastics and Composites 24, 1929-1963.
Aviles-Ramos, C., A. Haji-Sheikh, and J. V. Beck, 1998, Exact solution of heat conduction in composite materials and application to inverse problems. Journal of Heat Transfer 120, 592-599. Berger, J. R., P. A. Martin, V. Manti, and L. J. Gray, 2005, Fundamental solutions for steady-state heat transfer in an exponentially graded anisotropic material. Zeitschrift fur Angewandte Mathematik und Physik 56, 293-303. Dai, Y., W. Tan, Q. Sun, and Y. D. Li, 2007, Effect of different thermal conductivity functions on temperature fields in FGM. Journal of Materials Processing Technology, 187, 212-214. Divo, E., and A. J. Kassab, 1998, Generalized boundary integral equation for heat conduction in non-homogeneous media: recent developments on the sifting property. Engineering Analysis with Boundary Elements 22, 221-234. Erdogan, F., and B. H. Wu, 1996, Crack problems in FGM layers under thermal stresses. Journal of Thermal Stresses 19, 237-265. Gray, L. J., T. Kaplan, J. D. Richardson, and G. Asme, 2003, Green’s functions and boundary integral analysis for exponentially graded materials: heat conduction. Journal of Applied Mechanics 70, 543-549. Hui, P. M., X. Zhang, A. J. Markworth, and D. Stroud, 1999, Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation. Journal of Materials Science 34, 5497-5503. Kassab, A. J., and E. Divo, 1996, A generalized boundary integral equation for isotropic heat conduction with spatially varying thermal conductivity. Engineering Analysis with Boundary Elements 18, 273-286. Kim, K. S., and N. Noda, 2001, Green’s function approach to three-dimensional heat conduction equation of functionally graded materials. Journal of Thermal Stresses 24, 457-477. Ma, C. C., and S. W. Chang, 2004, Analytical exact solutions of heat conduction problems for anisotropic multi-layered media. International Journal of Heat and Mass Transfer 47, 1643-1655. Ma, C. C., Wu, W. C., Lee, J. M., 2008. Full-field analysis and image forces for piezoelectric bimaterials. Acta Mechanica 195, 275-294. Markworth, A. J., K. S. Ramesh, and W. P. Parks, 1995, Modelling studies applied to functionally graded materials. Journal of Materials Science 30, 2183-2193. Noda, N., 1999, Thermal stresses in functionally graded materials, Journal of Thermal Stresses 22, 477-512. Noda, N., 2007, Two-Dimensional Heat Conduction Problem in a Functionally Graded Plate with a Slanting Boundary to the Functional Gradation. Journal of Thermal Stresses 30, 715-730. Noda, N., and Z. Jin, 1993, Thermal stress intensity factors for a crack in a strip of a functionally gradient material. International Journal of Solids and Structures 30, 1039-1056. Noda, N., and Z. H. Jin, 1994, A crack in functionally gradient materials under thermal shock. Archive of applied mechanics - Ingenieur Archiv 64, 99-110. Ochiai, Y., 2004, Two-dimensional steady heat conduction in functionally gradient materials by triple-reciprocity boundary element method. Engineering Analysis with Boundary Elements 28, 1445-1453. Ozisik, M. N., 1980, Heat Condution,Heat , Wiley, New York. Paulino, G. H., A. Sutradhar, and L. J. Gray, 2003, Boundary element methods for functionally graded materials. International Association for Boundary Element Method, 137-146. Reddy, J. N., and C. D. Chin, 1998, Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21, 593-626. Sladek, J., V. Sladek, C. Hellmich, and J. Eberhardsteiner, 2007, Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov–Galerkin method. Computational Mechanics 39, 323-333. Sladek, J., V. Sladek, and C. Zhang, 2003, Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method. Computational Materials Science 28, 494-504. Sutradhar, A., G. H. Paulino, and L. J. Gray, 2002, Transient heat conduction in homogeneous and non-homogeneous materials by the Laplace transform Galerkin boundary element method. Engineering Analysis with Boundary Elements 26, 119-132. Tanaka, M., and K. Tanaka, 1980, Transient heat conduction problems in inhomogeneous media discretized by means of boundary-volume element. Nuclear Engineering and Design 60, 381–387. Tanigawa, Y., T. Akai, R. Kawamura, and N. Oka, 1996, Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties. Journal of Thermal Stresses 19, 77-102. Tokovyy, Y. V., and C. C. Ma, 2009, Analytical solutions to the planar non-axisymmetric elasticity and thermoelasticity problems for homogeneous and inhomogeneous annular domains. International Journal of Engineering Science 47, 413-437. Wang, H., Q. H. Qin, and Y. L. Kang, 2006, A meshless model for transient heat conduction in functionally graded materials. Computational Mechanics 38, 51-60. 朱哲均,2007, “以基本解法結合數值轉換求解非均質材料上之勢能和擴散導問題, ” 國立台灣大學土木工程學研究所碩士論文。 張適文,2000,“二維異向性層狀介質之穩態熱傳理論解析,”國立台灣大學機械研究所碩士論文。 吳珞傑,2002,“平行及環狀多層域穩態熱傳與薄層暫態熱傳問題之理論解析,”國立台灣大學機械工程學研究所碩士論文。 李瑞木,2008,“功能梯度磁電彈薄層材料之全場理論解析與映射力的探討,” 國立台灣大學機械工程學研究所博士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42692 | - |
| dc.description.abstract | 複合材料在現今工業界使用甚廣,然而相異材質在接合面上容易產生應力過大及熱應力集中的問題,因此功能性梯度材料的概念被引進。其基本構想是在原有兩種性質完全不同的材料間引入一過渡層,利用此過渡層材料特性連續性變化來連接,能夠有效降低界面材料結構破損的問題,因此,材料特性可隨空間分佈連續變化的功能性梯度材料在近幾年學者已開始進行大量的研究。功能性梯度材料可被視為非均質材料,所以在分析問題的解析上會較均質材料複雜及困難,然而其最大的優點在於當材料係數在界面上是相同時,則所有物理量將會沿著材料介面連續變化,如此可降低材料的破損及增加可靠度。
本文以非均質功能性梯度材料層域介質之熱傳問題為研究之主要方向。對於非均質功能性梯度材料,其熱傳導方程式較傳統熱傳方程式複雜,本文將熱傳導係數假設為指數型函數。文中利用傅立葉積分轉換技巧,再導入邊界條件、連續條件以及跳躍條件,求得轉換域下的解,然而逆轉換之解析解不易求得,故本文採用數值積分方法來求傅立葉逆轉換的解,並由數學解析的結果以及數值計算來分析界面上溫度場與熱通量場的連續特性。另外,由三層板所求的解搭配映射法,來求得三層矩形板的溫度場與熱通量場全場解。 | zh_TW |
| dc.description.abstract | In recent years, composite materials are extensively used, nevertheless, material properties are discontinuous at the interface, and cracks are often generated in the interfaces. Functionally graded materials (FGMs) are the materials whose material properties are smoothly varying along one axis, and they are used as buffer layers to connect two dissimilar materials. By choosing proper functionally graded parameters, the material properties at the interface can be identical, thus the discontinuous jump at the interface can be reduced.
This thesis investigates heat conduction problems of nonhomogeneous functionally graded materials for multilayered media. Mathematically, the heat conduction equation of nonhomogeneous media is more complicated than that of homogeneous material. From the Fourier transform method, the full-field solutions of nonhomogeneous functionally graded materials with three layers are obtained. Numerical calculations based on the analytical solutions are performed and are discussed in detail. The image method is used to construct the solutions for rectangular finite boundary with three layers. It is noted from this thesis that the temperature and heat flux fields along the interface for nonhomogeneous functionally graded materials are more continuous than those for homogeneous materials if the conductivities at the interface are continuous. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:19:55Z (GMT). No. of bitstreams: 1 ntu-98-R96522509-1.pdf: 4707168 bytes, checksum: 1ba51e2418ea8816b6f11155d8832346 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Abstract I
Contents III List of Figures V Chapter 1 Introduction 1 1-1 Research Motivation 1 1-2 Literature Survey 1 1-3 Thesis Organization 3 Chapter 2 Heat Conduction Equation in Functionally Graded Material 5 2-1 Heat Conduction Equation in FGM 5 2-2 General Solution 7 Chapter 3 Heat Conduction Analysis for Nonhomogeneous Functionally Graded Materials 9 3-1 Green's Functions of Two Dissimilar Functionally Graded Half - Planes 9 3-2 The Characteristics at the Interface for Continuous Material Constants in the Nonhomogeneous Bimaterial 14 3-3 Green’s Function of a Layer Sandwiched between Two Half-Planes 18 3-3.1 The Heat Source is Applied in the Thin Layer 19 3-3.2 The Heat Source is Applied in the Half-Plane 22 3-4 The Characteristics at the Interface for Continuous Material Constants in the Nonhomogeneous Material with a Layer Sandwiched Between Two Half-Planes 25 3-5 Numerical Results and Discussion 35 Chapter4 Heat Conduction Analysis of Nonhomogeneous Functionally Graded Three-Layer Media 79 4-1 Green’s Functions of Functionally Graded Three- Layer Media 79 4-1.1 The Applied Heat Source is in Middle Layer 79 4-1.2 The Applied Heat Source is in Bottom Layer 84 4-1.3 The Applied Heat Source is on the Boundary 88 4-2 The Characteristics at the Interface for Continuous Material Constants in the Nonhomogeneous Three-Layer Media 90 4-3 Use Method of Images to Construct Solutions for Nonhomogeneous Functionally Graded Rectangular Three-Layer 94 4-4 Numerical Results and Discussions 96 Chapter 5 Conclusion and Future Works 143 5-1 Conslusion 143 5-2 Future Works 144 References 145 | |
| dc.language.iso | en | |
| dc.subject | 層板 | zh_TW |
| dc.subject | 功能性梯度材料 | zh_TW |
| dc.subject | 熱傳導 | zh_TW |
| dc.subject | 非均質 | zh_TW |
| dc.subject | 指數型函數 | zh_TW |
| dc.subject | exponentially graded function | en |
| dc.subject | functionally graded material (FGM) | en |
| dc.subject | layered media | en |
| dc.subject | heat conduction | en |
| dc.subject | nonhomogeneous | en |
| dc.title | 非均質功能性梯度材料層域介質之熱傳問題理論解析 | zh_TW |
| dc.title | Theoretical Analysis of Heat Conduction Problems of Nonhomogeneous Functionally Graded Materials for Multilayered Media | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊德良,陳明新,盧中仁 | |
| dc.subject.keyword | 功能性梯度材料,熱傳導,非均質,指數型函數,層板, | zh_TW |
| dc.subject.keyword | functionally graded material (FGM),heat conduction,nonhomogeneous,exponentially graded function,layered media, | en |
| dc.relation.page | 149 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
