請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42666完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂勝春(Sheng-Chung Lee) | |
| dc.contributor.author | Ya-Yun Cheng | en |
| dc.contributor.author | 鄭雅云 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:19:11Z | - |
| dc.date.available | 2010-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-27 | |
| dc.identifier.citation | 1. Liu CY and Kaufman RJ (2003) The unfolded protein Response. Journal of Cell Science, 116, 1861-1862.
2. Kim I, Xu W and Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Drug discovery, 7, 1013-1030. 3. Ron D and Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Molecular cell biology, 8, 519-529. 4. Wek RC, Jiang HY, and Anthony TG. (2006) Coping with stress: eIF2 kinases and translational control Biochem Soc Trans., 34 (Pt 1), 7-11. 5. Vattem KM, and Wek RC. (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A., 101, 11269-74. 6. Meijer HA, and Thomas AA. (2002) Control of eukaryotic protein synthesis by upstream open reading frames in the 5'-untranslated region of an mRNA. Biochem J., 367, 1-11. 7. Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D, and Fafournoux P. (2001) Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5’UTR. Nucleic Acids Res, 29, 4341-51. 8. Szegezdi E, Logue SE, Gorman AM and Samali A (2006) Mediators of endoplasmic reticulum stress-induced Apoptosis. EMBO reports, 7, 880–885. 9. Oyadomari S, and Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation, 11, 381–389 10. Novoa, Zeng H, Harding HP and Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol., 153, 1011–1021. 11. Hardie DG (2004) The AMP-activated protein kinase pathway – new players upstream and downstream. Journal of Cell Science, 117, 5479-5487 12. Hardie DG (2003) Minireview: The AMP-Activated Protein Kinase Cascade: The Key Sensor of Cellular Energy Status. Endocrinology, 144(12), 5179–5183 13. Reiter AK, Bolster DR, Crozier SJ, Kimball SR, and Jefferson LS (2005) Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. Am J Physiol Endocrinol Metab, 288, E980–E988 14. Williamson DL, Bolster DR, Kimball SR, and Jefferson LS (2006) Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR. Am J Physiol Endocrinol Metab, 291, E80–E89 15. Cheng WY, Fryer GD, Carling D, and Shepherd PR (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem., 279(16), 15719–15722 16. Wang X and Proud CG (2006) The mTOR pathway in the control of protein synthesis. PHYSIOLOGY, 21, 362–369 17. Reiling JH and Sabatini DM (2006) Stress and mTORture signaling. Oncogene, 25, 6373–6383 18. Wang X, Li W, Williams M, Terada N, Alessi DR, and Proud CG (2001). Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J. 20, 4370–4379. 19. Horman S, Browne GJ, Krause U, Patel JV, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud CG, and Rider MH (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Current Biology, 12, 1419–1423 20. Browne GJ, Finn SG, and Proud CG (2004) Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem, 279, 12220–12231, 21. Sunnerhagen P (2007) Cytoplasmatic post-transcriptional regulation and intracellular signalling. Mol Genet Genomics., 277, 341-55 22. Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J., 18, 270-9. 23. Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S and Sonenberg N (1998) A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell. Biol., 18, 334–342. 24. Imataka H and Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol., 17, 6940–6947. 25. Imataka H, Olsen HS and Sonenberg N (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G.. EMBO J. 16, 817–825. 26. Imataka H, Gradi A and Sonenberg N (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly (A)-binding protein and functions in poly(A)-dependent translation. EMBO J., 17, 7480–7489. 27. Harding HP, Zhang Y, Bertolotti A, Zeng H, and Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Molecular Cell, 5, 897–904 28. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev., 18, 1926–1945. 29. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem., 68, 913-63. 30. Wang BJ, Zhang P and Wei Q (2008) Recent progress on the structure of Ser/Thr protein phosphatases. Sci China Ser C-Life Sci, 51, 487-494 31. Lammers T, Lavi S (2007) Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Critical Reviews in Biochemistry and Molecular Biology, 42, 437-461 32. Hanada M, Kobayashia T, Ohnishia M, Ikeda S, Wang H, Katsura K, Yanagawa Y, Hiraga A, Kanamaru R, Tamura S (1998) Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Letters, 437, 172-176 33. Takekawa M, Maeda T and Saito H (1998) Protein phosphatase 2Cα inhibits the human stress-responsive p38 and JNK MAPK pathways. The EMBO Journal, 17(16), 4744–4752 34. Wang X, Mader MM, Toth JE, Yu X, Jin N, Campbell RM, Smallwood JK, Christe ME, Chatterjee A, Goodson T, Jr., Vlahos CJ, Matter WF, and Bloem LJ (2005) Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. J. Biol. Chem., 280(19), 19298–19305 35. Davies SP, Helps NR, Cohen TW, Hardie DG (1995) 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2Ac. FEBS Letters, 377, 421-425 36. Zhou H, Zheng M, Chen J, Xie C, Kolatkar AR, Zarubin T, Ye Z, Akella R, Lin S, Goldsmith EJ, and Han J (2006) Determinants That Control the Specific Interactions between TAB1 and p38. MCB, 26(10), 3824–3834. 37. Ge B, Xiong X, Jing Q, Mosley JL, Filose A, Bian D, Huang S, and Han J (2003) TAB1β (transforming growth factor-β-activated protein kinase 1-binding protein 1β), a novel splicing variant of TAB1 that interacts with p38α but not TAK1. J. Biol. Chem., 278(4), 2286–2293 38. Ge B, Gram H, Padova FD, Huang B, New L, Ulevitch RJ, Luo Y, Han J (2002) MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. SCIENCE, 295, 1291-1294 39. Li J, Miller EJ, Tsuji JN, Russell RR, Young LH (2005) AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ. Res., 97, 872-879 40. Kang YJ, Nebi AS, Davis RJ, and Han J (2006) Multiple activation mechanisms of p38α mitogen-activated protein kinase. J. Biol. Chem., 281(36), 26225–26234 41. Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, and Hirota H (2005) AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. MCB, 25(21), 9554–9575 42. Knebel A, Haydon CE, Morrice N and Cohen P (2002) Stress-induced regulation of eukaryotic elongation factor 2 kinase by SB 203580-sensitive and -insensitive pathways. Biochem. J., 367, 525-532 43. Knebel A, Morrice N, and Cohen P. (2001) A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J, 20(16), 4360–4369 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42666 | - |
| dc.description.abstract | 細胞面臨 stress 時,會啟動unfolded protein respons機制以協助細胞度過困厄的環境。此機制主要是藉由轉錄和轉譯兩個層面來調控下游基因的表現,這些基因的功能著重於協助蛋白質結構的折疊、失活蛋白的降解以及細胞的凋亡三方面。 CHOP 即為其中一員,其功能與細胞凋亡有關,CHOP 本身除了受轉錄調控之外,亦受到其基因上游 uORF 的轉譯調控。據本實驗室未發表的實驗成果得知:細胞在處理 anisomycin 的情況下,能誘導受uORFchop 轉譯調控的下游基因大量表現,而在這樣的轉譯調控機制中,轉譯啟始因子eIF4E、eIF2α 和 4E-BP1的磷酸化顯得十分重要。本篇論文討論的重點在於發現— AMPK,一個參與眾多環境壓力相關的重要蛋白,也參與 anisomycin 所引發的訊息傳遞途徑中,並深切影響著 uORFchop 的轉譯調控。在 anisomycin 的處理下,適度活化的AMPK會透過抑制 PP2C β1(去磷酸酶)來增強 p38 MAPK-Mnk-eIF4E 的訊息傳遞途徑,進而影響uORFchop所調控的轉譯表現。此外,在 AICAR 的刺激下,高度活化的AMPK同時也會經由 mTOR 訊息傳遞途徑去抑制此轉譯表現機制,故依我們的實驗結果推測得知:在 anisomycin 刺激下,AMPK 在 uORFchop 的轉譯表現中扮演著一個正向調控的角色。 | zh_TW |
| dc.description.abstract | Unfolded protein response (UPR) regulates gene expression through transcriptional and translational control and results in ER stress recovery or cell apoptosis. CHOP is one of the components that involves in the ER stress-mediated pathway. Upstream open reading frame (uORF) of the CHOP plays an essential role in controlling the protein expression via translation. We have shown that anisomycin-induced uORF-mediated CHOP translation depends on the phosphorylated eIF4E/S209, eIF2α and 4E-BP1. In this report, we uncovered that AMPK is involved in the induction of uORF-mediated CHOP translation under anisomycin treatment. When moderately activated by anisomycin, AMPK maintains the phosphorylated level of p38 MAPK, Mnk, and eIF4E/S209 by negatively regulate phosphatase PP2Cβ1 activity. When fully activated by AICAR, AMPK inhibits both PP2C β1 and mTOR activities, leading to inability of dissociation of the eIF4E-4EBP1 complex and repression of translation initiation complex formation. Taken together, the present results indicate that anisomycin-activated AMPK plays positive regulatory roles in uORF-mediated CHOP translation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:19:11Z (GMT). No. of bitstreams: 1 ntu-98-R96448007-1.pdf: 2847475 bytes, checksum: 2ca70b8004debcef4a60230c3ba6fe86 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 II
摘要 III Abstract IV Contents V Introduction 1 Material and methods 7 Plasmids and Constructs 7 Cell culture and transfection 9 Chemicals Treatment 9 Preparation of Whole Cell Extraction 10 Immunopreciptation assay 10 SDS-PAGE 11 Western blot analysis 12 Antibodies 13 Luciferase assay 13 Results 14 The AMPK inhibitor, compound C, represses anisomycin induced uORF-mediated luciferase expression and reduces the phosphorylation levels of p38 MAPK, Mnk, eIF4E/S209. 14 Anisomycin and AICAR induced AMPK regulates uORFchop-mediated luciferase expression through mTOR pathway. 15 AICAR treatment results in decrease of eIF4F formation (i.e., the association of eIF4G and eIF4E). 16 The functions of AMPK in anisomycin-induced CHOP expression. 17 PP1 and PP2A are not AMPK downstream phosphatases that regulate p38 MAPK-Mnk-eIF4E pathway by anisomycin treatment. 17 PP2C β1 may be the downstream phosphatase of AMPK negatively regulates anisomycin stimulated p38 MAPK-Mnk-eIF4E pathway. 18 Discussion 20 References 24 List of Figures 31 Figure 1. Compound C represses anisomycin-induced uORFchop-regulated luciferase expression. 31 Figure 2. Anisomycin treatment activates AMPK activity, while compound C represses anisomycin-induced p38 MAPK, Mnk, eIF4E phosphorylation. 32 Figure 3. The AMPK activator, AICAR, represses anisomycin induced CHOP uORFchop-regulated luciferase expression but increases the phosphorylation of p38 MAPK, Mnk, and eIF4E. 35 Figure 4. AMPK influences uORFchop-regulated luciferase expression through mTOR pathway under anisomycin and AICAR co-treatment. 37 Figure 5. Decreased association of eIF4G to eIF4E by AICAR treatment. 38 Figure 6. AMPK mutants mimics anisomycin-induced CHOP expression. 40 Figure 7. PP1 and PP2A are not the AMPK downstream targets that regulate the p38 MAPK-Mnk-eIF4E pathway under anisomycin treatment. 42 Figure 8. PP2C β1 may be the downstream phosphatase of AMPK. 44 Figure 9. Proposed model for anisomycin-induced AMPK signaling pathways for activation of uORFchop-mediated translation. 45 | |
| dc.language.iso | en | |
| dc.subject | anisomycin | zh_TW |
| dc.subject | 轉譯調控 | zh_TW |
| dc.subject | 壓力 | zh_TW |
| dc.subject | AMPK | zh_TW |
| dc.subject | uORF | en |
| dc.subject | anisomycin | en |
| dc.subject | AMPK | en |
| dc.title | AMPK 對於調控 anisomycin 所誘導 CHOP 轉譯作用的探討 | zh_TW |
| dc.title | Regulation of anisomycin-induced, upstream open reading frame-driven, CHOP translation by AMP-activated protein kinase | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李芳仁(Fang-Jen Lee),林琬琬(Wan-Wan Lin) | |
| dc.subject.keyword | 轉譯調控,壓力,AMPK,anisomycin, | zh_TW |
| dc.subject.keyword | uORF,AMPK,anisomycin, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
