Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42661
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃鐘揚
dc.contributor.authorJi-Han Liuen
dc.contributor.author劉季涵zh_TW
dc.date.accessioned2021-06-15T01:19:03Z-
dc.date.available2009-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation[1] Adrian Evan, Allan Siburt, Gary Vrckonik, Thane Brown, Mario Dufresne, Geoffrey Hall, Tung Ho and Ting Liu, “Functional Verification of Large ASICs”, 35th Design Automatic Conf., June 1998.
[2] Chien-Nan Liu and Jing-Yang Jou, “On Computer-Aided Techniques for Functional Verification of Complex Digital Designs”, PhD Dissertation, Department of Electronics and Institute of Electronics College of Electrical Engineering and Computer Science, National Chiao Tung University, May 2001.
[3] Mike Benjamin, Daniel Geist, Alan Hartman, Yaron Wolfsthal, Gerard Mas, and Ralph Smeets, “A Study in Coverage-Driven Test Generation”, 36th Design Automatic Conf., June 1999.
[4] Richard C. Ho and Mark A. Horowitz, “Validation Coverage Analysis for Complex Digital Designs”, Int’l Conf. on Computer Aided Design, Nov. 1996.
[5] Dinos Moundanos, Jacob A. Abraham, and Yatin V. Hoskote, “Abstraction Techniques for Validation Coverage Analysis and Test Generation”, IEEE Trans. on Computer, Vol. 47, no. 1, pp. 2-14, Jan. 1998.
[6] Michael C. McFarland, “Formal Verification of Sequential Hardware: A Tutorial”, IEEE Trans. on Computer-Aided Design of Integration Circuits and System, vol. 12, no. 5, pp.633-654, May 1993.
[7] Vishnu C. Vamjamv, “Strategies for SAT-based Formal Verification”, PhD Dissertation, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Jan. 2007.
[8] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential Circuit Verification Using Symbolic Model Checking”, 27th Design Automatic Conf., June 1990.
[9] H. Iwashita, T. Nakata, and F. Hirose, “CTL Model Checking Based on Forward State Traversal”, Int’l Conf. on Computer Aided Design, Nov. 1996.
[10] Jerry R. Burch, Edmund M. Clarke, Davide E. Long, Kenneth L. McMillan, and David L. Dill, “Symbolic Model Checking for Sequential Circuit Verification”, IEEE Trans. on Computer-Aided Design, vol. 13, no. 4, pp.401-424, Apr. 1994.
[11] Randal E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation”, IEEE Trans. On Computers, pp. 677-691, Aug. 1986.
[12] Aarti Gupta, Zijiang Yang, Pranav Ashar, Lintao Zhang and Sharad Malik, “Partition-Based Decision Heuristics for Image Computation using SAT and BDDs”.
[13] Maher Mneimneh and Karem Sakallah, “SAT-based Sequential Depth Computation”.
[14] Ralph Marczynski, Mitchell A. Thornton and Stephen A. Szygenda, “Test Vector Generation and Classification using FSM Traversals”, Department of Computer Science and Engineering, Southern Methodist University.
[15] Shankar G. Govindaraju, David L. Dill and Jules P. Bergmann, “Implicit Approximate Reachability using Auxiliary State Variable”, Computer System Laboratory, Stanford University.
[16] Kavita Ravi, Kenneth L. McMillan, Thomas R. Shiple and Fabio Somenzi, “Approximation and Decomposition of Binary Decision Diagrams”, 35th Design Automatic Conf., June 1998.
[17] Michael L. Case, Alan Mishchenko and Robert K. Brayton, “Inductively Finding a Reachable State Space Over-Approximation”, Department of EECS, University of California, Berkeley.
[18] Thomas Robert Shiple, “Formal Analysis of Synchronous Circuits”, PhD Dissertation, Graduate Division of Engineering-Electrical Engineering and Computer Sciences, University of California, Berkeley.
[19] Tsu-Hua Wang and Chong Guan Tan, “Practical Code Coverage for Verilog”, Int’l Verilog HDL Conf., Mar. 1995.
[20] Dean Darko and Paul Cohen, “HDL Verification Coverage”, Integrated Systems Design Magazine, June 1998.
[21] Jing-Yang Jou and Chien-Nan Jimmy Liu, “Coverage Analysis Techniques for HDL Design Validation”, the 6th Asia Pacific Conf. on cHip Design Languages (APCHDL‘99), October 1999.
[22] C.-N. Liu and J.-Y. Jou, “Efficient Coverage Analysis Metric for HDL Design Validation”, IEE Proceedings – Computers and Digital Techniques, vol. 148, no. 1, pp. 1-6, Jan. 2001.
[23] Chen-Yi Chang, “On Functional Coverage Analysis for Circuit Description in HDL”, Master Thesis, Department of Electronics Engineering, National Chiao Tung University, 1999.
[24] Gianpiero Cabodi and Paolo Camurati, “Symbolic FSM Traversals Based on the Transition Relation”, IEEE Trans. on Computer-Aided Design vol. 16, no. 5, pp.448-457, May 1997.
[25] F. Somenzi, “CUDD: CU Decision Diagram Package”, http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
[26] K. S. Brace, R. L. Rudell, and R. E. Bryant. “Efficient Implementation of a BDD Package”, Design Automation Conference, 1990.
[27] ABC: A System for Sequential and Verification, http://www.berkeley.edu/~alanmi/abc/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42661-
dc.description.abstract由於電路設計日趨複雜化,電路正確性的驗證已是不可或缺的一個步驟。模擬是目前普遍用於驗證邏輯閘階層或暫存器移轉階層電路設計的功能的方法,然而這種方法對於人工輸入或隨機產生的模擬測試序列品質的評估,雖然已有數種涵蓋率的技術來作量化的比較,但是對於驗證完整度的評量,仍然缺乏一種具有足夠鑑別率的量化量度。因此在本論文中,我們以正規驗證技術的循序深度計算與可達性分析,推衍出可供設計者評估模擬測試序列品質與模擬涵蓋率的合理量度,並且亦修正前述量度以因應正規驗證在較大電路的運算資源不足問題。此外,本論文所提出的量度是根據循序深度的模擬正確度、限定模擬時間中布林狀態空間中狀態或cubes的模擬完整度、循序深度的模擬效能以及設計者加權等需求而決定。zh_TW
dc.description.abstractDue to the increasing design complexity, verification of modern VLSI designs has become an essential work in the design flow. Simulation is predominant verification method to verify the functionality of gate level or register-transfer level (RTL) design nowadays. However, it lacks one quantitative metric with enough discrimination to verify the simulation completeness although there exist several coverage metrics for qualifying the test sequence manually defined or randomly generated in simulation. Accordingly, sequential depth computation and reachability analysis of the formal verification techniques are employed to derive or infer the feasible metrics for measuring the quality of test sequence and coverage of simulation. Hence, a modified version of the mentioned metric is proposed to overcome the problem of failure in sequential depth computation and BDD (binary decision diagrams) of transition relationship construction due to the system resource explosion. The proposed metrics consist of the requirements of simulation correctness of sequential depth, simulation completeness of states or cubes of Boolean state space in limited simulation timeframe, simulation performance of sequential depth and weighting in accordance with designer’s preference or concern of the simulation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:19:03Z (GMT). No. of bitstreams: 1
ntu-98-P94921003-1.pdf: 700642 bytes, checksum: b8883a11367a1677adb70119c15ad233 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
Table of Contents IV
List of Figures VI
List of Tables VII
Chapter 1 Introduction 1
1.1 Simulation-Based and Formal-Based Verification 1
1.2 State Reachability of Simulation and Formal Approaches 4
1.3 Verification Quality 5
1.4 Organization of the Thesis 5
Chapter 2 Motivation of the Thesis 7
2.1 Limitation of Simulation-Based Verification 7
2.2 Limitation of Formal-Based Verification 8
2.3 Coverage Metrics 9
Chapter 3 Formal-based Functional Coverage Metrics 11
3.1 Definition of our Functional Coverage Metric 11
3.2 Definition of our Approximate Functional Coverage Metric 14
3.3 Algorithm Overview 15
3.4 Reachability Analysis 18
3.5 Simulation and Depth Collection 22
Chapter 4 Experimental Results 25
Chapter 5 Conclusions and Future Works 32
Reference 34
dc.language.isoen
dc.subject循序深度zh_TW
dc.subject可達性分析zh_TW
dc.subject模擬zh_TW
dc.subject涵蓋率量度zh_TW
dc.subject正規驗證zh_TW
dc.subject二元決策圖zh_TW
dc.subjectreachability analysisen
dc.subjectSimulationen
dc.subjectFormal Verificationen
dc.subjectBDD (Binary Decision Diagrams)en
dc.subjectcoverage metricen
dc.subjectsequential depthen
dc.title以正規方法驗證模擬測試序列品質zh_TW
dc.titleQualify Simulation Test Sequence with Formal Methoden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳朝欽,李建模
dc.subject.keyword模擬,正規驗證,二元決策圖,涵蓋率量度,循序深度,可達性分析,zh_TW
dc.subject.keywordSimulation,Formal Verification,BDD (Binary Decision Diagrams),coverage metric,sequential depth,reachability analysis,en
dc.relation.page37
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
684.22 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved