Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42647
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永耀(Yung-Yaw Chen)
dc.contributor.authorYu-Min Linen
dc.contributor.author林育民zh_TW
dc.date.accessioned2021-06-15T01:18:41Z-
dc.date.available2009-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation[1]. Kevin J. Dowling, “Limbless Locomotion: Learning to Crawl with a Snake Robot”, Ph.D Thesis, The Robotics Institute, Carnegie Mellon University, December 1997.
[2]. Walter Mosauer, “On the Locomotion of Snakes”, Science, Vol. 76, No. 1982, pp. 583-585, December 1932.
[3]. J. Gray, “The Mechanism of Locomotion in Snakes,” Journal of Experimental Biology, Vol. 23, No. 2, pp. 101-120, December 1946.
[4]. Shigeo Hirose, Biologically Inspired Robot: Snake-Like Locomotors and Manipulators, Oxford University Press, 1993.
[5]. Makoto Mori and Shigeo Hirose, “Three-dimensional Serpentine Motion and Lateral Rolling by Active Cord Mechanism ACM-R3”, Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 829-834, October 2002.
[6]. Yansong Shan and Yoram Koren, “Design and Motion Planning of a Mechanical Snake”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 4, pp. 1091-1100, July 1993.
[7]. Jim Ostrowski and Joel Burdick, “Kinematics for a Serpentine Robot”, Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, pp. 1294-1299, April 1996.
[8]. Masashi Saito, Masakazu Fukaya and Tetsuya Iwasaki, “Serpentine Locomotion with Robotic Snakes”, IEEE Control System Magazine, pp. 64-81, February 2002.
[9]. Alessandro Crespi, Andre Badertscher, Andre Guignard and Auke Jan Ijspeert, “AmphiBot I: an amphibious snake-like robot”, Robotics and Autonomous Systems, Vol. 50, pp. 163–175, 2005.
[10]. Toshio Takayama and Shigeo Hirose, “Amphibious 3D Active Cord Mechanism “HELIX” with Helical Swimming Motion”, Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, pp. 775-780, October 2002.
[11]. Bernhard Klaassen and Karl L. Paap, “GMD-SNAKE2: A Snake-Like Robot Driven by Wheels and a Method for Motion Control”, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, pp. 3014-3019, May 1999.
[12]. Michael Walton, Bruce C. Jayne and Albert F. Bennett, “The Energetic Cost of Limbless Locomotion”, Science, Vol. 249, pp. 524–527, Aug. 1990.
[13]. Shugen Ma, “Analysis of Creeping Locomotion of a Snake-like Robot”, Advanced Robotics, Vol. 15, No. 2, pp. 205-224, 2001.
[14]. Junji Ute and Kyosuke Ono, “Fast and Efficient Locomotion of a Snake Robot Based on Self-Excitation Principle”, Proceedings of the IEEE 7th International Workshop on Advanced Motion Control, pp. 532–539, 2002.
[15]. Vipul Mehta, Sean Brennan and Farhan Gandhi, “Experimentally Verified Optimal Serpentine Gait and Hyperredundancy of a Rigid-Link Snake Robot”, IEEE Transactions on Robotics, Vol. 24, No. 2, pp. 348-360, April 2008.
[16]. Shugen Ma “Analysis of Snake Movement Forms for Realization of Snake-like Robots”, Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, pp. 3007-3013, May 1999
[17]. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002.
[18]. Changlong Ye, Shugen Ma, Bin Li and Yuechao Wang, “Turning and Side Motion of Snake-like: Robot”, Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 5075-5080, April 2004.
[19]. J. Gray and W. Lissmann, “The Kinetics of Locomotion of the Grass-Snake”, Journal of Experimental Biology, Vol. 26, pp. 354-367, June 1949.
[20]. J.W. Burdick, J. Radford and G.S. Chirikjian, “A “Sidewinding” Locomotion Gait for Hyper-Redundant Robots”, Advanced Robotics, Vol. 9, No. 3, pp. 195-216, 1993.
[21]. P. S. Krishnarasad and D. P. Tsakiris, “G-Snakes: Nonholonomic Kinematic Chains on Lie Groups”, Proceedings of the 33rd IEEE Conference on Decision and Control, pp. 2955-2960, Lake Buena Vista, Florida, December 1994.
[22]. Gregory S. Chirikjian and Joel W. Burdick, “The Kinematics of Hyper-Redundant Robot Locomotion”, IEEE Transactions on Robotics and Automation, Vol. 11, No. 6, pp. 781–793, December 1995.
[23]. Jim Ostrowski, Joel Burdick, Andrew D. Lewis and Richard M. Murray, “The Mechanics of Undulatory Locomotion: the Mixed Kinematic and Dynamic Case”, IEEE International Conference on Robotics and Automation, pp. 1945-1951, 1995.
[24]. Scott D. Kelly and Richard M. Murray, “Geometric Phases and Robotic Locomotion”, Journal of Robotic Systems, Vol. 12, No. 6, pp. 417-431, 1995.
[25]. Gianluca Poi, Carlo Scarabeo and Benedetto Allotta, ”Traveling Wave Locomotion Hyper-Redundant Mobile Robot” , Proceedings of the 1998 IEEE International Conference on Robotics and Automation, pp. 418- 423, Leuven, Belgium, May 1998.
[26]. Jim Ostrowski and Joe Burdick, “The Geometric Mechanics of Undulatory Robotic Locomotion”, International Journal of Robotics Research, Vol. 17, No. 7, pp. 683–701, 1998.
[27]. K. Sarrigeorgidis and K. J. Kyriakopoulos, “Motion Control of the N.T.U.A. Robotic Snake on a Planar Surface”, Proceedings of the 1998 IEEE International Conference on Robotics and Automation, pp. 2977-2983, Leuven, Belgium, May 1998.
[28]. Gen Endo, Keiji Togawa and Shigeo Hirose, “Study on Self-Contained and Terrain Adaptive Active Cord Mechanism”, Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1399-1405, 1999.
[29]. P. Prautsch and T. Mita, “Control and Analysis of the Gait of Snake Robots”, Proceedings of the 1999 IEEE International Conference on Control Applications, pp. 502-507, Kohala Coast-Island of Hawaii, Hawaii, USA, August 1999.
[30]. Hidetake Ohno and Shigeo Hirose, “Design of Slim Slime Robot and its Gait of Locomotion”, Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 707-715, Maui, Hawaii, USA, October 2001.
[31]. Jorge Cortés, Sonia Martínez, James P. Ostrowski and Kenneth A. McIsaac, “Optimal Gaits for Dynamic Robotic Locomotion”, International Journal of Robotics Research, Vol. 20, No. 9, pp. 707-728, September 2001.
[32]. Shugen Ma., Hiroaki Araya, and Li Li, “Development of a Creeping Snake-Robot”, Proceedings of 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 77–82, Banff, Alberta, Canada, July 2001.
[33]. G. Meltem Kulali, Mustafa Gevher, Aydan M. Erkmen and Ismet Erkmen “Intelligent Gait Synthesizer for Serpentine Robots”, Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1513-1518, May 2002.
[34]. Liu Xinyu and Fumitoshi Matsuno, “Control of Snake-Like Robot Based on Kinematic Model with Image Sensor”, Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, pp. 347-352, October 2003.
[35]. González-Gómez J., Aguayo E. and Boemo E., “Locomotion of a Modular Worm-like Robot Using a FPGA-Based Embedded MicroBlaze Soft-Processor”, 7th International Conference on Climbing and Walking Robots, Madrid, Spain, September 2004.
[36]. Shang-Wei Yeh, “Motion Control of Biomimetic Snake Robots with Adaptation to Variable Environmental Condition”, Master Thesis, Department of Electrical Engineering, National Taiwan University, 2008.
[37]. Kai-Hsiang Chang, “Efficiency on Snake Locomotion with Constant and Variable Bending Angle”, Master Thesis, Department of Electrical Engineering, National Taiwan University, 2008.
[38]. Homepage of Hirose-Fukushima Robotics Lab, at http://www-robot.mes.titech.ac.jp/home_e.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42647-
dc.description.abstract仿生學研究動物的自然特性,將其優勢應用到工程領域當中。由仿生學的觀點,蛇類的特殊外貌及運動方式是相當值得探討的。現今的蛇型機械人大多採用蜿蜒爬行的運動方式做移動。日本學者Hirose提出了一個公式去描述蜿蜒爬行的運動方式。依據這個公式,蛇類做蜿蜒爬行時,整個軀幹使用一個固定振幅的彎曲角度。然而,根據實驗的觀察,蛇並非固定範圍地擺動身體。中間軀幹的擺動幅度比起頭尾部分都還要大。這個自然行為所帶來的優勢是應當被探討的。
在本論文內,我們設計了數種機械蛇的運動模式,這些模式是根據觀察而啟發的,其彎曲角度的振幅在整個軀幹上是變動的。機械蛇在不同的運動模式下,會有不一樣的運動效率,本論文主要探討在變動彎曲角度的模式下,對機械蛇運動效率的影響。
zh_TW
dc.description.abstractThe studies on snake robot mostly adopt serpentine movement as the way of locomotion. Hirose proposed a famous equation to describe the serpentine motion which has been widely used by the researchers. According to the equation, snakes use constant amplitude of bending angles through the whole body. However, the amplitudes are not equivalent in the practical observation and analysis. Amplitudes are various in the different parts of snake. The phenomenon can be applied to improve the equations.
The improvement to snake robot locomotion is decided by the efficiency analysis. Some special moving modes of snake robot are proposed to discuss the locomotion efficiency. These modes are the application from the observation. Efficiency discussion includes simulation and experiment, both results show the better efficiency with the improvements.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:18:41Z (GMT). No. of bitstreams: 1
ntu-98-R96921051-1.pdf: 2041220 bytes, checksum: a36ec681ce381c9173cff02a5baef4de (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 I
Abstract II
Contents III
List of Figures IV
Chapter 1 Introduction 1
1.1 Biomimetics 1
1.2 Motivation 2
1.3 Thesis Organization 3
Chapter 2 Locomotion of Snake and Snake Robot 5
2.1 Locomotion of Snake 5
2.2 Serpenoid Curve 9
2.3 Snake Robot 13
2.4 Motion of Snake Robot 17
2.5 Efficiency of Snake Robot 19
Chapter 3 Real Snake Curve Extraction 21
3.1 Video Capture 22
3.2 Image Analysis 23
3.3 Bending Angle Data 26
3.4 Trend of Bending Angle Amplitudes 28
Chapter 4 Model of Snake Robot and Moving Efficiency 30
4.1 Model Assumptions 31
4.2 Kinematics and Dynamics 32
4.3 Derivation of Dynamic Equations 36
4.4 Efficiency for Snake Robot Locomotion 46
Chapter 5 Simulation 48
5.1 Simulation System 48
5.2 Motion Analysis 50
5.3 Locomotion Efficiency 56
Chapter 6 Experiment 60
6.1 Snake Robot and Experiment Setting 60
6.2 Measurement 63
6.3 Locomotion Efficiency 65
Chapter 7 Conclusions and Future Work 68
Appendix 69
Reference 81
dc.language.isoen
dc.subject機械蛇zh_TW
dc.subject蛇行運動zh_TW
dc.subject蜿蜒爬行zh_TW
dc.subject彎曲角度zh_TW
dc.subject運動效率zh_TW
dc.subjectlocomotion efficiencyen
dc.subjectsnake roboten
dc.subjectsnake locomotionen
dc.subjectserpentineen
dc.subjectbending angleen
dc.title變動彎曲角度對機械蛇運動效率的探討zh_TW
dc.titleEffect of Bending Angle Variation to
Snake Robot Locomotion Efficiency
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee連豊力(Feng-Li Lian),顏家鈺(Jia-Yush Yen)
dc.subject.keyword機械蛇,蛇行運動,蜿蜒爬行,彎曲角度,運動效率,zh_TW
dc.subject.keywordsnake robot,snake locomotion,serpentine,bending angle,locomotion efficiency,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved