Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42639
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞(Hung-Chun Chang)
dc.contributor.authorChang-Chun Chungen
dc.contributor.author鍾長均zh_TW
dc.date.accessioned2021-06-15T01:18:28Z-
dc.date.available2011-07-29
dc.date.copyright2009-07-29
dc.date.issued2008
dc.date.submitted2009-07-27
dc.identifier.citation[1] Arbel, D., and M. Orenstein, ``Plasmonic modes in W-shaped metal-coated silicon grooves,' Opt. Express, vol. 16, pp. 3114--3119, 2008.
[2] Baken, N. H., M. B. J. Diemeer, J. M. V. Splunter, and H. Blok, ``Computational modeling of diffused channel waveguides using a domain integral equation,' J. Lightwave Technol., vol. 8, pp. 576--586, 1990.
[3] Barnes, W. L., A. Dereux, and T. W. Ebbesen, ``Surface plasmon subwavelength optics,' Nature., vol. 424, pp. 824--830, 2003.
[4] Berenger, J. P., ``A perfectly matched layer for the absorption of electromagnetic waves,' J. Comp. Phys., vol. 114, pp. 185--200, 1994.
[5] Berini, P., ``Plasmon–polariton modes guided by a metal film of finite width,' Opt. Lett., vol. 24, pp. 1011--1013, 1999.
[6] Berini, P., ``Figures of merit for surface plasmon waveguides,' Opt. Express, vol. 14, pp. 13030--13042, 2006.
[7] Bierwirth, K., N. Schulz, and F. Arndt, ``Finite-difference
analysis of rectangular dielectric waveguides structures,'
IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1104--1113,
1986.
[8] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956.
[9] Boltasseva, A., V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, ``Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,' Opt. Express, vol. 16, pp. 5252--5260, 2008.
[10] Bozhevolnyi, S. I., ``Effective-index modeling of channel plasmon polaritons,' Opt. Express, vol. 14, pp. 9467--9476, 2006.
[11] Bozhevolnyi, S. I. and J. Jung, ``Scaling for gap plasmon based waveguides,' Opt. Express, vol. 16, pp. 2676--2684, 2008.
[12] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, ``Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,' Phys. Rev. B, vol. 95, 046802, 2005.
[13] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, ``Channel plasmon subwavelength waveguide components including interferometers and ring resonators,' Nature, vol. 440, pp. 508--511, 2006.
[14] Burke, J. J., and G. I. Stegeman, ``Surface-polariton-like waves guided by thin, lossy metal films,' Phys. Rev. B, vol. 33, pp. 5186--5201, 1986.
[15] Cavendish, J. C., D. A. Field, and W. H. Frey, ``An approach to automatic three-dimensional finite element mesh generation,' Int. J. Number. Meth. Eng., vol. 21, pp. 329--347, 1985.
[16] Chang, H. C., H. C. Yeh, C. H. Peng, and B. Y. Lin, ``Modal analysis of plasmonic waveguides,' in Japan-Indo Workshop on Microwaves, Photonics, and Communication Systems Digest, pp. 94--98, 2007.
[17] Chang, S. H., T. C. Chiu, and C. Y. Tai, ``Propagation characteristics of the supermode propagation characteristics of the supermode waveguides,' Opt. Express, vol. 15, pp. 1755--1761, 2007.
[18] Collin, Field Theory of Guided Waves. Washington: IEEE Press, 1991.
[19] Chen, H. J., Hybrid-elements FEM based complex mode solver for optical waveguides with triangular-mesh generator. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003.
[20] Chen, J. C., and S. Jungling, ``Computation of higher-order waveguide modes by imaginary-distance beam propagation method,' Opt. Quantum Electron., vol. 26, pp. S199--S205, Mar. 1994.
[21] Dionne, J. A., L. A. Sweatlock, H. A. Atwater, and A. Polman, ``Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,' Phys. Rev. B, vol. 73, 035407, 2006.
[22] Feigenbaum, E., and M. Orenstein, ``Nano plasmon polariton modes of a wedge cross section metal waveguide,' Opt. Express, vol. 14, pp. 8779--8784, 2006.
[23] Feng, N. N., M. L. Brongersma, and L. D. Nergo, ``Metal dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 $mu$m,' IEEE J. Quantum Electron., vol. 43, pp. 479--485, 2007.
[24] Feng, N. N., G. R. Zhou, and W. P. Huang, ``Mode calculation by beam propagation method combined with digital signal processing technique,' IEEE J. Quantum Electron., vol. 39, pp. 1111--1117, 2003.
[25] Harley, G. R., and R. E. Smith, ``Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,' J. Lightwave Technol., vol. 13, pp. 465--469, 1995.
[26] Haus, H. A., Waves and Fields in Optoelectronics. Englewood Cliffs, New Jersey: Prentice-Hall, 1983.
[27] Hsu, S. M., Full-vectorial finite element beam propagation method based on curvilinear hybrid edge/nodal elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004.
[28] Jackson, J. D., Classical Electrodynamics. 3rd ed. New York: Wiley, 1999.
[29] Jin, J., The Finite Element Method in Electromagnetics, 2nd ed. New York: Wiley-IEEE Press, 2002
[30] Johnson P. B., and R. W. Christy, ``Optical constants of the nobal metals,' Phys. Rev. B, vol. 6, pp. 4370--4379, 1972.
[31] Kawata, S., Near-Field Optics and Surface Plasmon Polaritons. Berlin: Springer-Verlag, 2001.
[32] Kim, J., ``Surface plasmon-polariton waveguiding characteristics of metal/dielectric quasi-coplanar structures,' Opt. Lett., vol. 32, pp. 3405--3407, 2007.
[33] Koshiba, M., Y. Tsuji, and M. Hikari, ``Finite element beam propagation method with perfectly matched layer boundary conditions,' IEEE Trans. Magnet., vol. 35, pp. 1482--1485, 1999.
[34] Koshiba, M., and Y. Tsuji, ``Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,' J. Lightwave Technol.,
vol. 18, pp. 737--743, 2000.
[35] Lapchuk, A. S., S. A. Shylo, and I. P. Nevirkovets, ``Local plasmon resonance at metal wedge,' J. Opt. Soc. Am. A, vol. 25, pp. 1535--1540, 2008.
[36] Lee, I. M., J. Jung, J. Park, H. Kim, and B. Lee, ``Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,' Opt. Express, vol. 15, pp. 16596--16603, 2007.
[37] Lee, J. F., D. K. Sun, and Z. J. Cendes, ``Full-wave analysis of dielectric waveguides using tangential vector finite elements,' IEEE
Trans. Microwave Theory Tech., vol. 39, pp. 1262--1271, 1991.
[38] Lee, J. F., Finite element method with curvilinear hybrid edge/nodal triangular-shape elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002.
[39] Liu, L., Z. Han, and S. He, ``Novel surface plasmon waveguide for high integration,' Opt. Express, vol. 13, pp. 6645--6650, 2005.
[40] Lusse, P., P. Stuwe, J. Sch$ddot{u$le, and H.-G.
Unger, ``Analysis of vectorial mode fields in optical waveguides
by an new finite difference method,' J. Lightwave
Technol., vol. 12, pp. 487--493, 1994.
[41] Meixner, J., ``The behavior of electromagnetic fields at edges,' IEEE Trans. Antennas Propagat., AP-20, pp. 442--446, 1972.

[42] Moreno, E., F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, ``Channel plasmon-polaritons: Modal shape, dispersion, and losses,' Opt. Lett., vol. 31, pp. 3447--3449, 2006.
[43] Novikov, I. V., and A. A. Maradudin, ``Channel polaritons,' Phys. Rev. B, vol. 66, 035403--1--13, 2002.
[44] Novotny, L., and B. Hecht, Principles of Nano-Optics. New York: Cambridge University Press, 2006.
[45] Palik, E. D., Handbook of Optical Constants of Solids. New York: Academic, 1985.
[46] Pendry, J. B., ``Negative Refraction Makes a Perfect Lens,' Phys. Rev. Lett., vol. 85, pp. 3966--3969, 2000.
[47] Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007.
[48] Peterson, A. F., ``Vector finite element formulation for scattering from two-dimensional heterogeneous bodies,' IEEE Trans. Antennas Propagat.,
vol. 43, pp. 357--365, 1994.
[49] Pile, D. F. P. and D. K. Gramotnev, ``Channel plasmon-polariton in a triangular groove on a metal surface,' Opt. Lett., vol. 29, pp. 1069--1071, 2004.
[50] Pile, D. F. P. and D. K. Gramotnev, ``Plasmonic subwavelength waveguides: next to zero losses at sharp bends,' Opt. Lett., vol. 30, pp. 1186--1188, 2005.
[51] Pile, D. F. P., D. K. Gramotnev, R. F. Oulton, and X. Zhang, ``On long-range plasmonic modes in metallic gaps,' Opt. Express., vol. 15, pp. 13669--13674, 2007.
[52] Pile, D. F. P., T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, ``Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,' Appl. Phys. Lett., vol. 87, 261114, 2005.
[53] Raether, H., Surface Plasmons. Berlin: Springer-Verlag, 1988.
[54] Ritchie, R. H., ``Plasma losses by fast electrons in thin films,' Phys. Rev., vol. 106, pp. 874--881, 1957.
[55] Rebay, S., ``Efficient unstructured mesh generation by means
of Delaunay triangulation and Bowyer-Watson algorithm,' J.
Comput. Phys., vol. 105, pp. 125-138, 1993.
[56] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee ``A perfectly matched anisotropic absorber for use as an absorbingboundary condition,' IEEE Trans. Antennas Propagat., vol. 43, pp. 1460--1463, 1995.
[57] Saito, K., and M. Koshiba, ``Full-vectorial finite element beam propagation method withperfectly matched layers for anisotropic optical waveguides,' J. Lightwave Technol., vol. 19, pp. 405--413, 2001.
[58] Saito, K., and M. Koshiba, ``Approximate scalar finite-element beam-propagation method with perfectly matched layers for anisotropic optical waveguides,' J. Lightwave Technol., vol. 19, pp. 786--792, 2001.
[59] Saito, K., and M. Koshiba, ``Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,' IEEE J. Quantum Electron., vol. 38, pp. 927--933, 2002.
[60] Satuby, Y., and M. Orenstein, ``Surface-plasmon-polariton modes in deep metallic trenches-measurement and analysis,' Opt. Express, vol. 15, pp. 4247--4252, 2007.
[61] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, ``Mixed finite element beam propagation method,' J. Lightwave Technol., vol. 16, pp.
1336--1341, 1998.
[62] Sphicopulos, T., V. Teodoridis, and F. E. Gardiol, ``Dyadic
Green function for the electromagnetic field in multilayered
isotropic media: an operator approach,' Inst. Elec. Eng.
Proc., vol. 132, pp. 329--335, 1985.
[63] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, ``Analysis of the apectral index method for vector modes of rib waveguides,' Inst. Elec. Eng. Proc.-J., vol. 137, pp. 21--26, 1990.
[64] Teixeira, F. L., and W. C. Chew, ``PML-FDTD in cylindrical and spherical grids,' IEEE Microwave Guided Wave Lett., vol. 7, pp.285--287, 1997.
[65] Tsuji, Y., M. Koshiba, and T. Tanabe, ``A wide-angle beam propagation. method based on a finite element scheme,' IEEE Trans. Magnet., vol. 33, pp. 1544--1547, 1997.
[66] Tsuji, Y. and M. Koshiba, ``Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,' J. Lightwave Technol., vol. 18, pp. 618--623, 2000.
[67] Uller, Dissertation. 1903.
[68] Vernois, G., and S. Fan, ``Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,' Appl. Phys. Lett., vol. 87, 131102, 2005.
[69] Vernois, G., and S. Fan, ``Guided subwavelength plasmonic mode supported by a slot in a thin metal film,' Opt. Lett., vol. 30, pp. 3359--3361, 2005.
[70] Vernois, G., and S. Fan, ``Modes of subwavelength plasmonic slot waveguides,' J. Lightwave Technol., vol. 25, pp. 2511--2521, 2007.
[71] Vernois, G., and S. Fan, ``Crosstalk between three-dimensional plasmonic slot waveguides,' Opt. Express, vol. 16, pp. 2129--2140, 2008.
[72] Vial, A. A. S. Grimault, D. Macias, D. Barchiesi, and M. L. Chapelle, ``Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,' Phys. Rev. B, vol. 71, 085416, 2005.
[73] Volkov, V. S., S. I. Bozhevolnyi, E. Devaux and T. W. Ebbesen, ``Compact gradual bends for channel plasmon polaritons,' Opt. Express, vol. 14, pp. 4494--4503, 2006.
[74] Wangsness, R. K., Electromagnetic Fields, 2nd ed. New York: Wiley, 1986.
[75] Yan, M., and M. Qiu, ``Guided plasmon polariton at 2D metal coners,' J. Opt. Soc. Am. B, vol. 24, pp. 2333--2342, 2007.
[76] Yeh, H. C., Finite Element Modal Analysis of Surface Plasmonic Waveguides. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, July 2007.
[77] Yevick, D., and W. Bardyszewski, ``Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,' Opt. Lett., vol. 17, pp. 329--330, 1991.
[78] Yevick, D., and B. Hermansson, ``Numerical analyses of the modal eigenfunctions of chirped and unchirped multiple-stripe-geometry laser arrays,' J. Opt. Soc. Am. A, vol. 4, pp. 379--390, 1986.
[79] Zenneck, Ann. der Physik, vol. 23, pp. 846--866, 1907.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42639-
dc.description.abstract本研究致力於使用虛軸有限元素波束傳播法分析表面電漿極化子波導。這些具有侷域模場分布特性的波導包括了對稱�非對稱槽形波導與理想�實際三角形波導,將受到詳細研究。首先,我們介紹表面電漿子與表面電漿極化子導波結構的歷史、相關研究、與基本現象。之後,我們展示分析計算的結果,包括等效折射率與損耗(傳播長度)、模場分布、以及色散關係。在不同設計參數情況下的詳細模場分部有助於觀察物理現象並找出設計方法(以及設計上的權衡考量)。我們解釋觀察的結果,並與已發表的研究作比較。本論文也分析並詮釋許多有趣的議題,諸如鮮少發表的三角形波導的尖角分析計算、非對稱與對稱槽形波導行為的不同傾向、以及重新檢驗在以發表文獻中所描述的模場「截止」現象。zh_TW
dc.description.abstractThis research is devoted to analyzing the surface plasmon polariton (SPP) waveguides using the finite-element imaginary-distance beam propagation method (FE-ID-BPM). These waveguides, including symmetric/asymmetric slot waveguides as well as ideal/real triangle-shaped waveguides, have confined modal field distributions and are studied in detail. First, we introduce the history and the studies and the basic physical phenomenon of the surface plasmon as well as SPP guiding structures. Then we present our calculation results, comprising the effective index and the loss (propagation length), the modal field profiles, and the dispersion relationships. Detailed modal field profiles in different design parameter cases are displayed to observe the physical phenomenon and scout the design methods (as well as the design trade-offs). The observed results are interpreted and compared to other published works. Several interesting issues, for example, the sharp corner case of the triangle-shaped waveguide which is rarely reported, the different inclination of asymmetric slot waveguides compared to symmetric ones, and the reexamination of the mode ``cut-off' phenomenon described in published literature, are addressed and explained.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:18:28Z (GMT). No. of bitstreams: 1
ntu-97-R95941040-1.pdf: 8526483 bytes, checksum: f36b9f615e145042982abd365e5008f6 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction … 1
1.1 Motivation … 1
1.2 Numerical Methods … 2
1.3 Chapter Outline … 5
2 Mathematical Formulation and Related Techniques … 6
2.1 Perfectly Matched Layers … 6
2.2 Techniques of the Finite-Element Method and the Finite Element
Mode Solver … 9
2.3 The Finite-Element Beam Propagation Method … 12
2.4 The Finite-Element Imaginary-Distance Beam Propagation Method … 16
3 Surface Plasmon Phenomenon and the Slot Waveguides … 24
3.1 Surface Plasmon … 24
3.2 Surface Plasmon Polariton Waveguides … 27
3.3 Slot Waveguides: An Overview … 27
3.4 Symmetric Slot Waveguides … 29
3.5 Asymmetric Slot Waveguides … 33
4 Analysis of Triangle-Shaped Surface Plasmon Polariton Waveguides … 64
4.1 Triangle-Shaped Waveguides: An Overview … 64
4.2 Ideal Triangle-Shaped Waveguide … 66
4.3 Real Triangle-Shaped Waveguides … 72
4.4 Dispersion Relationship … 74
5 Conclusion … 106
dc.language.isoen
dc.title以全向量虛軸有限元素波束傳播法分析槽形與三角形表面電漿子波導zh_TW
dc.titleAnalysis of Slot and Triangle-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Methoden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊雄,江衍偉,王俊凱
dc.subject.keyword表面電漿子,波導,有限元素法,波束傳播法,zh_TW
dc.subject.keywordsurface plasmon,waveguide,finite element method,beam propagation method,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
8.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved