請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42634完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Ya-Ya Chang | en |
| dc.contributor.author | 張雅雅 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:18:18Z | - |
| dc.date.available | 2014-07-30 | |
| dc.date.copyright | 2009-07-30 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-27 | |
| dc.identifier.citation | 參考文獻
1. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-854. 2. Griffiths-Jones, S., et al., miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008. 36(Database issue): p. D154-8. 3. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. Embo J, 2004. 23(20): p. 4051-60. 4. Cai, X., C.H. Hagedorn, and B.R. Cullen, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna, 2004. 10(12): p. 1957-66. 5. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-9. 6. Lund, E., et al., Nuclear export of microRNA precursors. Science, 2004. 303(5654): p. 95-8. 7. Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6. 8. Bohnsack, M.T., K. Czaplinski, and D. Gorlich, Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna, 2004. 10(2): p. 185-91. 9. Ambros, V., et al., A uniform system for microRNA annotation. Rna, 2003. 9(3): p. 277-9. 10. Rajewsky, N., microRNA target predictions in animals. Nat Genet, 2006. 38 Suppl: p. S8-13. 11. Umbach, J.L. and B.R. Cullen, The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev, 2009. 23(10): p. 1151-64. 12. Mello, C.C. and D. Conte, Jr., Revealing the world of RNA interference. Nature, 2004. 431(7006): p. 338-42. 13. Tomari, Y. and P.D. Zamore, Perspective: machines for RNAi. Genes Dev, 2005. 19(5): p. 517-29. 14. Bernstein, E., et al., Dicer is essential for mouse development. Nat Genet, 2003. 35(3): p. 215-7. 15. Liao, R.M., Development of conditioned place preference induced by intra-accumbens infusion of amphetamine is attenuated by co-infusion of dopamine D1 and D2 receptor antagonists. Pharmacol Biochem Behav, 2008. 89(3): p. 367-73. 16. Chen, C.Z., et al., MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004. 303(5654): p. 83-6. 17. Lu, J., et al., MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell, 2008. 14(6): p. 843-53. 18. Sempere, L.F., et al., Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 2004. 5(3): p. R13. 19. Sokol, N.S. and V. Ambros, Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev, 2005. 19(19): p. 2343-54. 20. Callis, T.E., J.F. Chen, and D.Z. Wang, MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol, 2007. 26(4): p. 219-25. 21. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69. 22. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004. 23. Grosshans, H., et al., The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell, 2005. 8(3): p. 321-30. 24. Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell, 2005. 120(5): p. 635-47. 25. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16): p. 7065-70. 26. Holbro, T., G. Civenni, and N.E. Hynes, The ErbB receptors and their role in cancer progression. Exp Cell Res, 2003. 284(1): p. 99-110. 27. Yarden, Y., The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer, 2001. 37 Suppl 4: p. S3-8. 28. Riese, D.J., 2nd and D.F. Stern, Specificity within the EGF family/ErbB receptor family signaling network. Bioessays, 1998. 20(1): p. 41-8. 29. Olayioye, M.A., et al., The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J, 2000. 19(13): p. 3159-67. 30. Stern, D.F., ErbBs in mammary development. Exp Cell Res, 2003. 284(1): p. 89-98. 31. Fedi, P., et al., Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol, 1994. 14(1): p. 492-500. 32. Hellyer, N.J., K. Cheng, and J.G. Koland, ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J, 1998. 333 ( Pt 3): p. 757-63. 33. Luo, J., B.D. Manning, and L.C. Cantley, Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell, 2003. 4(4): p. 257-62. 34. Hamburger, A.W., The role of ErbB3 and its binding partners in breast cancer progression and resistance to hormone and tyrosine kinase directed therapies. J Mammary Gland Biol Neoplasia, 2008. 13(2): p. 225-33. 35. Tsuda, H., et al., Identification of DNA copy number changes in microdissected serous ovarian cancer tissue using a cDNA microarray platform. Cancer Genet Cytogenet, 2004. 155(2): p. 97-107. 36. Tanner, B., et al., ErbB-3 predicts survival in ovarian cancer. J Clin Oncol, 2006. 24(26): p. 4317-23. 37. Koumakpayi, I.H., et al., Expression and nuclear localization of ErbB3 in prostate cancer. Clin Cancer Res, 2006. 12(9): p. 2730-7. 38. Myers, R.B., et al., Expression of p160erbB-3 and p185erbB-2 in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. J Natl Cancer Inst, 1994. 86(15): p. 1140-5. 39. Leung, H.Y., et al., A potential autocrine loop between heregulin-alpha and erbB-3 receptor in human prostatic adenocarcinoma. Br J Urol, 1997. 79(2): p. 212-6. 40. Lyne, J.C., et al., Tissue expression of neu differentiation factor/heregulin and its receptor complex in prostate cancer and its biologic effects on prostate cancer cells in vitro. Cancer J Sci Am, 1997. 3(1): p. 21-30. 41. Lozano, J.J., et al., Dual activation of pathways regulated by steroid receptors and peptide growth factors in primary prostate cancer revealed by Factor Analysis of microarray data. BMC Genomics, 2005. 6: p. 109. 42. Poller, D.N., et al., Production and characterization of a polyclonal antibody to the c-erbB-3 protein: examination of c-erbB-3 protein expression in adenocarcinomas. J Pathol, 1992. 168(3): p. 275-80. 43. Muller-Tidow, C., et al., Identification of metastasis-associated receptor tyrosine kinases in non-small cell lung cancer. Cancer Res, 2005. 65(5): p. 1778-82. 44. Chen, H.Y., et al., A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med, 2007. 356(1): p. 11-20. 45. Zhou, H., et al., Lung tumorigenesis associated with erb-B-2 and erb-B-3 overexpression in human erb-B-3 transgenic mice is enhanced by methylnitrosourea. Oncogene, 2002. 21(57): p. 8732-40. 46. Sithanandam, G., et al., Cell cycle activation in lung adenocarcinoma cells by the ErbB3/phosphatidylinositol 3-kinase/Akt pathway. Carcinogenesis, 2003. 24(10): p. 1581-92. 47. Sithanandam, G., et al., Alternate paths from epidermal growth factor receptor to Akt in malignant versus nontransformed lung epithelial cells: ErbB3 versus Gab1. Am J Respir Cell Mol Biol, 2005. 33(5): p. 490-9. 48. Lemoine, N.R., et al., Expression of the ERBB3 gene product in breast cancer. Br J Cancer, 1992. 66(6): p. 1116-21. 49. Naidu, R., et al., Expression of c-erbB3 protein in primary breast carcinomas. Br J Cancer, 1998. 78(10): p. 1385-90. 50. Travis, A., et al., C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br J Cancer, 1996. 74(2): p. 229-33. 51. Gasparini, G., et al., c-erbB-3 and c-erbB-2 protein expression in node-negative breast carcinoma--an immunocytochemical study. Eur J Cancer, 1994. 30A(1): p. 16-22. 52. Wiseman, S.M., et al., Coexpression of the type 1 growth factor receptor family members HER-1, HER-2, and HER-3 has a synergistic negative prognostic effect on breast carcinoma survival. Cancer, 2005. 103(9): p. 1770-7. 53. Kim, H.H., et al., Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein. Biochem J, 1998. 334 ( Pt 1): p. 189-95. 54. Pinkas-Kramarski, R., et al., Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. Embo J, 1996. 15(10): p. 2452-67. 55. Holbro, T., et al., The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8933-8. 56. van der Horst, E.H., et al., Anti-HER-3 MAbs inhibit HER-3-mediated signaling in breast cancer cell lines resistant to anti-HER-2 antibodies. Int J Cancer, 2005. 115(4): p. 519-27. 57. Sithanandam, G. and L.M. Anderson, The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther, 2008. 15(7): p. 413-48. 58. Stern, D.F., ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J Mammary Gland Biol Neoplasia, 2008. 13(2): p. 215-23. 59. Guo, C., et al., The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer, 2008. 47(11): p. 939-46. 60. Yang, H., et al., MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res, 2008. 68(2): p. 425-33. 61. Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007. 133(2): p. 647-58. 62. Pezzolesi, M.G., et al., Differential expression of PTEN-targeting microRNAs miR-19a and miR-21 in Cowden syndrome. Am J Hum Genet, 2008. 82(5): p. 1141-9. 63. Bueno, M.J., I.P. de Castro, and M. Malumbres, Control of cell proliferation pathways by microRNAs. Cell Cycle, 2008. 7(20): p. 3143-8. 64. Chang, Y.M., et al., Prediction of human miRNAs using tissue-selective motifs in 3' UTRs. Proc Natl Acad Sci U S A, 2008. 105(44): p. 17061-6. 65. Muppidi, J., M. Porter, and R.M. Siegel, Measurement of apoptosis and other forms of cell death. Curr Protoc Immunol, 2004. Chapter 3: p. Unit 3 17. 66. Li, C.H., et al., Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci, 2005. 77(3): p. 252-65. 67. Asangani, I.A., et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008. 27(15): p. 2128-36. 68. Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell, 2003. 115(7): p. 787-98. 69. Clancy, J.L., et al., Methods to analyze microRNA-mediated control of mRNA translation. Methods Enzymol, 2007. 431: p. 83-111. 70. Corvera, S. and M.P. Czech, Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol, 1998. 8(11): p. 442-6. 71. Brazil, D.P., J. Park, and B.A. Hemmings, PKB binding proteins. Getting in on the Akt. Cell, 2002. 111(3): p. 293-303. 72. Hsieh, A.C. and M.M. Moasser, Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer, 2007. 97(4): p. 453-7. 73. Prigent, S.A. and W.J. Gullick, Identification of c-erbB-3 binding sites for phosphatidylinositol 3'-kinase and SHC using an EGF receptor/c-erbB-3 chimera. Embo J, 1994. 13(12): p. 2831-41. 74. Vanhaesebroeck, B. and D.R. Alessi, The PI3K-PDK1 connection: more than just a road to PKB. Biochem J, 2000. 346 Pt 3: p. 561-76. 75. West, M.J., M. Stoneley, and A.E. Willis, Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene, 1998. 17(6): p. 769-80. 76. Koziczak, M., T. Holbro, and N.E. Hynes, Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene, 2004. 23(20): p. 3501-8. 77. Noh, W.C., et al., Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res, 2004. 10(3): p. 1013-23. 78. Gera, J.F., et al., AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem, 2004. 279(4): p. 2737-46. 79. Meyuhas, O., Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem, 2000. 267(21): p. 6321-30. 80. Dancey, J. and E.A. Sausville, Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov, 2003. 2(4): p. 296-313. 81. Aronica, S.M. and B.S. Katzenellenbogen, Progesterone receptor regulation in uterine cells: stimulation by estrogen, cyclic adenosine 3',5'-monophosphate, and insulin-like growth factor I and suppression by antiestrogens and protein kinase inhibitors. Endocrinology, 1991. 128(4): p. 2045-52. 82. Pietras, R.J., et al., HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene, 1995. 10(12): p. 2435-46. 83. Campbell, R.A., et al., Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem, 2001. 276(13): p. 9817-24. 84. Knuefermann, C., et al., HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 2003. 22(21): p. 3205-12. 85. Dong, J., et al., Role of glycogen synthase kinase 3beta in rapamycin-mediated cell cycle regulation and chemosensitivity. Cancer Res, 2005. 65(5): p. 1961-72. 86. Diehl, J.A., et al., Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev, 1998. 12(22): p. 3499-511. 87. Kraus, M.H., et al., Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A, 1989. 86(23): p. 9193-7. 88. Lund, C.V., et al., Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology. Mol Cell Biol, 2005. 25(20): p. 9082-91. 89. Scott, G.K., et al., Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem, 2007. 282(2): p. 1479-86. 90. Grant, S., L. Qiao, and P. Dent, Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front Biosci, 2002. 7: p. d376-89. 91. Sterner, D.E. and S.L. Berger, Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 2000. 64(2): p. 435-59. 92. Janknecht, R. and A. Nordheim, MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem Biophys Res Commun, 1996. 228(3): p. 831-7. 93. Goel, A. and R. Janknecht, Acetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu. Mol Cell Biol, 2003. 23(17): p. 6243-54. 94. Baert, J.L., et al., Expression of the PEA3 group of ETS-related transcription factors in human breast-cancer cells. Int J Cancer, 1997. 70(5): p. 590-7. 95. Shepherd, T.G., et al., The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr Biol, 2001. 11(22): p. 1739-48. 96. Bosc, D.G., B.S. Goueli, and R. Janknecht, HER2/Neu-mediated activation of the ETS transcription factor ER81 and its target gene MMP-1. Oncogene, 2001. 20(43): p. 6215-24. 97. Benz, C.C., et al., HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene, 1997. 15(13): p. 1513-25. 98. Bosc, D.G. and R. Janknecht, Regulation of Her2/neu promoter activity by the ETS transcription factor, ER81. J Cell Biochem, 2002. 86(1): p. 174-83. 99. Goel, A. and R. Janknecht, Concerted activation of ETS protein ER81 by p160 coactivators, the acetyltransferase p300 and the receptor tyrosine kinase HER2/Neu. J Biol Chem, 2004. 279(15): p. 14909-16. 100. Neve, R.M., T. Holbro, and N.E. Hynes, Distinct roles for phosphoinositide 3-kinase, mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells. Oncogene, 2002. 21(29): p. 4567-76. 101. Wu, H., S. Zhu, and Y.Y. Mo, Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res, 2009. 19(4): p. 439-48. 102. Sithanandam, G., et al., Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene, 2005. 24(11): p. 1847-59. 103. Chen, H., et al., Preliminary validation of ERBB2 expression regulated by miR-548d-3p and miR-559. Biochem Biophys Res Commun, 2009. 385(4): p. 596-600. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42634 | - |
| dc.description.abstract | 微型核醣核酸microRNA(miRNA)為一群內生型,長度在20-24個鹼基之間的核酸,對於其標靶基因能夠藉著與其訊息RNA (mRNA)的3’-非編碼區 (3’-UTR) 結合來進行負向調控,以抑制蛋白質的合成。最近的研究中發現微型核醣核酸除了與細胞的生長發育有密切關係之外,與癌症的發生與發展有密切的關係。此外,微型核醣核酸在細胞訊息傳遞路徑中所扮演的角色也逐漸被發現,但其確切的功能尚未完全解開。李文雄院士、施純傑博士與我們組成的團隊於2008發現並證實一個新的微型核醣核酸P-27-5p,我們以數個人類癌細胞株為材料來證實它的功能。在細胞存活率實驗中發現P-27-5p會導致細胞生長減緩,進一步細胞週期分析發現P-27-5p會使細胞停留在G0/G1時期。經由預測結果得知v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3)為P-27-5p的標靶基因,我們經由冷光酶活性測定分析以及西方墨點法驗證ErbB3確實為P-27-5p的標靶基因。在前人的研究中發現,ErbB3會藉著活化phosphatidylinositol 3-kinase (PI3K)/AKT訊息傳遞路徑來促使細胞增生,並且在很多癌細胞中其ErbB3為大量表現,導致癌細胞擁有快速的增生能力。從西方墨點法中證實P-27-5p會抑制ErbB3的表現,並抑制AKT的磷酸化。總而言之,本項研究發現P-27-5p會抑制ErbB3的表現,進而抑制其下游的訊息傳遞路徑,導致細胞週期停留在G0/G1時期,而使癌細胞生長受到抑制 。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:18:18Z (GMT). No. of bitstreams: 1 ntu-98-R95b43034-1.pdf: 4170636 bytes, checksum: b01880e0685d51a5b3972c5b48207de1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書..........................................Ⅰ 誌謝......................................................Ⅱ 中文摘要..................................................Ⅳ Abstract..................................................Ⅴ 縮寫表....................................................Ⅵ 第一章 前言.............................................. 1 1-1 miRNAs的介紹........................................1 1-2 miRNA與siRNA的比較 ..................................1 1-3 miRNA與發育的關係.....................................2 1-4 miRNA與癌症的關係.....................................2 1-5 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3)的介紹...................................3 1-6 ErbB3與癌症的關係.....................................4 1-7 phosphatidylinositol 3-kinase (PI3K)/ v-akt murine thymoma viral oncogene homolog 1 (AKT)訊息傳遞路徑與癌症........................................................5 1-8 P-27-5p的發現........................................6 第二章 實驗材料與方法....................................7 2-1、細胞培養........................................... .7 2-2、細胞總核糖核酸(含微型核糖核酸)萃取...................10 2-3、反轉錄反應 (Reverse Transcription) ..................11 1. miRNAs表現使用.........................................11 2. 基因表現使用...........................................11 2-4、即時定量聚合酶鏈鎖反應 (Real-Time PCR) ..............12 2-5、轉殖作用(transfection) ..............................12 2-6、細胞存活率實驗 (MTT assay) .'..........13 2-7、以流式細胞儀進行細胞週期分析 (cell cycle analysis)...13 2-8、以流式細胞儀進行細胞凋亡分析 (cell apoptosis analysis) ................................................13 2-9、西方墨點法 (Westen Blotting) ........................14 1. SDS聚丙烯醯胺膠體製備..................................14 2. SDS聚丙烯醯胺膠體電泳分析..............................15 3. 膠體電泳轉漬...........................................15 4. 抗體作用呈色分析.......................................15 2-10、 pMIR-REPORT-ErbB3 3’UTR expression vector質體構築.16 1. 引子黏合...............................................16 2. DNA限制酵素反應........................................16 3. 引子純化...............................................17 4. Luciferase 質體去鹽純化................................17 5. 接合作用...............................................17 6. 轉型作用...............................................18 7. 小量質體萃取...........................................18 8. 洋菜膠體置備...........................................19 9. 膠體電泳分析...........................................19 2-11、冷光酶活性測定分析(Luciferase reporter assay) ......19 1. 轉殖作用..............................................20 2. Luciferase與β-galactosidase訊號偵測...................20 第三章 結果..........................................22 3-1 利用顯微鏡觀察miRNA P-27-5p對乳癌細胞的影響...........22 3-2 利用real-time PCR方式探討miRNA P-27-5p在不同乳房細胞株的表現量差異................................................22 3-3 利用real-time PCR來驗證miRNA P-27-5p在轉殖後的基因表現量........................................................23 3-4 以MTT assay分析miRNA P-27-5p對細胞存活率的影響........24 3-5 以流式細胞儀觀察miRNA P-27-5p是否造成乳癌細胞凋亡.....24 3-6 以流式細胞儀分析miRNA P-27-5p對細胞週期的影響.........25 3-7 利用冷光酶活性測定分析驗證 miRNA P-27-5p能負向調控其標靶基因ErbB3.................................................26 3-8 利用西方墨點法來分析miRNA P-27-5p其標靶基因ErbB3的蛋白質產物表現量................................................27 3-9 利用西方墨點法來分析miRNA P-27-5p對ErbB2的蛋白質產物表現量有無影響................................................27 3-10利用西方墨點法來分析miRNA P-27-5p對AKT的磷酸化有無影響28 第四章 討論............................................29 圖.......................................................34 參考文獻.................................................60 附錄......................................................71 圖目錄 圖一、miRNAs的生合成路徑..................................34 圖二、miRNA與siRNA的差異..................................35 圖三、miRNA在癌症發生過程中所扮演的角色可依功能分為似抑癌基因或是似致癌基因..........................................36 圖四、ErbB3調控PI3K/AKT訊息傳遞路徑.......................37 圖五、以real-time PCR偵測P-27-5p在不同乳房細胞株的表現量..38 圖六、於MCF-7中加入precursor P-27-5p 48小時後於顯微鏡下的觀察結果....................................................39 圖七、於MCF-7中加入anti-sense P-27-5p 48小時後於顯微鏡下的觀察結果..... ..............................................40 圖八、以real-time PCR偵測P-27-5p在不同乳房細胞株的表現量..41 圖九、以real-time PCR偵測驗證P-27-5p在轉殖後的基因表現量..42 圖十、以MTT assay分析細胞存活率...........................43 圖十一、以流式細胞儀分析乳癌細胞凋亡現象..................44 圖十二、以流式細胞儀分析P-27-5p對乳房細胞MCF-10A及乳癌細胞MDA-MB-231細胞週期的影響..................................45 圖十三、以流式細胞儀分析P-27-5p對乳癌細胞MCF-7及T-47D細胞週期的影響..................................................46 圖十四、以流式細胞儀分析各乳房細胞株其細胞週期總整理......47 圖十五、以流式細胞儀分析肺癌細胞株H838和肺部纖維母細胞IMR-90細胞週期..................................................48 圖十六、P-27-5p 在ErbB3的標靶區域預測與引子設計...........49 圖十七、ErbB3冷光酶質體構築與定序確認.....................50 圖十八、冷光酶活性測定分析基本原理........................51 圖十九、利用冷光酶活性測定分析驗證P-27-5p能負向調控其標靶基因:ErbB3.................................................52 圖二十、利用西方墨點法來分析P-27-5p其標靶基因ErbB3的蛋白質產物表現量..................................................53 圖二十一、利用西方墨點法來分析P-27-5p對ErbB2的影響........54 圖二十二、利用西方墨點法來分析P-27-5p對磷酸化AKT的影響....55 圖二十三、推測P-27-5p藉著調控PI3K/AKT訊息傳遞路徑抑制細胞生長........................................................56 圖二十四、mTOR訊息傳遞路徑................................57 圖二十五、AKT能抑制GSK3β進而穩定Cyclin D.................58 圖二十六、推測P-27-5p能藉由抑制EP300進而抑制由ErbB2、EP300和ER81所形成的正向回饋路徑進而抑制ErbB2的表現...............59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微型核醣核酸 | zh_TW |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | 人類上皮因子接受體 | zh_TW |
| dc.subject | 流式細胞儀 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | ErbB3 | en |
| dc.subject | miRNA | en |
| dc.subject | cell cycle | en |
| dc.subject | breast cancer | en |
| dc.subject | flow cytometry | en |
| dc.title | 新miRNA P-27-5p影響人類癌細胞週期及其分子機轉之探討 | zh_TW |
| dc.title | Effects of a Novel miRNA P-27-5p on Human Cancer Cell Cycle and the Related Molecular Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文雄(Wen-Hsiung Li),黃宣誠(Hsuan-Cheng Huang),施純傑(Arthur Chun-Chieh Shih),林國儀(Kuo-I Lin) | |
| dc.subject.keyword | 微型核醣核酸,細胞週期,乳癌,流式細胞儀,人類上皮因子接受體, | zh_TW |
| dc.subject.keyword | miRNA,cell cycle,breast cancer,flow cytometry,ErbB3, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
