請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42625
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張尊國 | |
dc.contributor.author | Wei-Jhan Shyu | en |
dc.contributor.author | 徐偉展 | zh_TW |
dc.date.accessioned | 2021-06-15T01:18:03Z | - |
dc.date.available | 2009-07-29 | |
dc.date.copyright | 2009-07-29 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-27 | |
dc.identifier.citation | 1.王一雄,1997,土壤環境污染與農藥,明文書局,229-260。
2.王新傳,1981,鮑氏土壤機械分析法,作物需肥診斷技術,臺灣省農試所特刊號13,27-29。 3.王敏昭、王銀波,1994,大甲溪水系灌溉圳水氮、磷含量對土壤性質及水稻生長之影響,土壤與肥料污染研討會論文集,中華土壤肥料學會, 221-233。 4.日本工業規格協會,2002,煤碳與焦碳類–元素分析方法,日本工業分析標準方法JIS M8813。 5.行政院環境保護署環境檢驗所,2000,水中金屬元素萃取消化法-微波輔助酸消化法,NIEA W312.50C,環署檢字第55199號公告。 6.行政院環境保護署環境檢驗所,2002,砷化氫原子吸收光譜法,NIEA S310.62C,環署檢字第0910041985號公告。 7.初建、王敏昭,1999,重金屬於其污染土壤之固相型態,中國農業化學會誌,37,1,32-41。 8.李雲峰、王興理,1999,腐植質-金屬離子的錯合穩定性及土壤胡敏素的研究,貴州科技出版社,1-37。 9.林炎昌,1988,有機物影響土壤吸附重金屬特性之探討,國立臺灣大學環境工程學系碩士論文。 10.施孟璁,2007,關渡平原土壤砷鉛污染之空間分佈及成因探討,國立臺灣大學生物環境系統工程學系碩士論文。 11.姚佩萱,2008,砷污染地區農田土壤與稻作砷含量關係之研究,國立臺灣大學生物環境系統工程學研究所碩士論文。 12.孫琴、王曉蓉、丁士明,2005,超積累植物吸收重金屬的根隙效應研究進展,生態學雜誌,24,1,30-36。 13.黃任偉,2002,粒狀氫氧化鐵吸附地下水中砷之研究,國立成功大學環境工程學系碩士論文。 14.陳逸凡,2002,臺灣地區不同土系土壤膠體組成分對鎘吸附作用的影 響,國立屏東科技大學環境工程與科學系碩士論文。 15.陳聖堃,2008,鉛同位素示蹤法鑑識關渡農地砷、鉛濃度異常之成因,國立臺灣大學生物環境系統工程學系碩士論文。 16.張尊國,2007,臺北市農地土壤重金屬砷含量調查及查證計畫,臺北市政府環境保護局。 17.廖睿宏,2005,土壤溶液中Cl-、SO42-與黃酸根陰離子對Cd2+濃度之影響,朝陽科技大學環境工程與管理系碩士論文。 18.劉鎮宗,1996,土壤中有毒金屬的清道夫,環境工程會刊,7,1,76-84。 19.盧光亮,2007,濁水溪沖積扇南翼地質岩心中砷釋出機制探討,國立臺灣大學生物環境系統工程學系碩士論文。 20.謝正苗、黃昌勇、何振立,1998,土壤中砷的化學平衡,環境科學進展,6,1,22-34。 21.臺灣農家要覽增修訂三版策劃委員會,2005,臺灣農家要覽,行政院農業委員會,初版。 22.黎靜韻,1976,本省水稻田土壤有效矽與其他理化性質之研究,中華農業研究,25,4,273-280。 23.Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., Bhowmik, A., 1999. Arsenic poisoning in the Ganges delta. Nature 401, 545. 24.Adriano, D. C., 1986. Trace Elements in the Terrestrial Environment. Springer Verlag, New York, p. 533. 25.Beckett, P. H. T., 1989. The use of extractants in studies on trace metals in soils, sewage sludge, and sludge treated soils. Soil Science 9, 143-176. 26.Belzile, N., Lecomte, P., Tessier, A., 1989. Testing readsorption of trace elements during partial chemical extractions of bottom sediments. Environmental Science Technology 23, 1015-1020. 27.Bhattacharyyaa, P., Tripathyb, S., Kima, K., Kim, S. H., 2008. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotoxicology and Environmental Safety 71(1), 149-156. 28.Bissen, M., Frimmel, F. H., 2003. Arsenic-a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica, 31, 1, 9-18. 29.Brandstetter, A.., Lombi, E., Wenzel, W. W., 2000. Remediation Engineering of Contaminated Soils. In: Wise, D. L., Tarantolo, D. J., Cichon, E. J., Inyang, H. I., Stottmeister, U. (Eds.), Marcel Dekker, New York, p. 715. 30.Chao, T. T., Sanzolone, R. F., 1989. Fractionation of Soil Selenium by Sequential Partial Dissolution. Soil Science Society of America Journal 53, 385-392. 31.Elliott, H. A., Liberati, M. R. Huang, C. P., 1986. Competitive adsorption of heavy metals by sols. Journal of Environmental Quality 15, 214-219. 32.Evans, L. J., 1989. Chemistry of metal retention by soils. Environmental Science and Technology 23, 1046-1056. 33.Fedotov, P. S., Fitz, W. J., Wennrich, R., Morgenstern, P., Wenzel, W. W., 2005. Fractionation of arsenic in soil and sludge samples: continuous-flow extraction using rotating coiled columns versus batch sequential extraction. Analytica Chimica Acta 538, 93-98. 34.Ferguson, J. F., Gavis, J., 1972. A review of the arsenic cycle in natural waters. Water Research 6, 1259-1274. 35.Fitz, W. J., Wenzel, W. W., 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology 99, 259-278. 36.FÖrstner, U., 1985. Chemical forms and reactivities of metals in sediments: Chemical Methods for Assessing Bio-available Metals in Sludges and Soils. In: Leschber, R., Davis, R., L’Hermite, D. (Eds.), Elsevier, London, p. 1-30. 37.Goh, K. H., Lim, T. T., 2005. Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Applied Geochemistry 20, 229-239. 38.Harter, R. D., 1983. Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Science Society of America Journal 47, 47-51. 39.Irene, M., Lo, C., Yang, X. Y., 1998. Removal and redistribution of metals from contaminated soils by a sequential extraction method. Waste Management 18, 1-7. 40.Jain, C. K., Ali, I., 2000. Arsenic: occurrence, toxicity and speciation techniques. Water Research 34, 4304-4312. 41.Juan, C. N. M., José, M. G. Q., Daniel. B. W., Cristalina, Á. O., Eduardo, G. R., Antonio, M. C., 2007. Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure. Science of the Total Environment 378, 18-22. 42.Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., Hemond, H. F., 2001. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environment Science Technology 35, 2778-2784. 43.Knight, B., McGrath, S. P., 1995. A method to buffer the concentrations of free Zn and Cd ions using a caption exchange resin in bacterial toxicity studies. Environmental Toxicology 14, 2033-2039. 44.Kobayashi, T., 1978. Pollution by cadmium and the Itai-Itai disease in Japan. In Oheme, F. W. (ED.), Toxicity of heavy metals in the environment Part I, p. 199-260. 45.Laxen, D. P. H., Harrison, R. M., 1981. The physicochemical speciation of Cd, Pb, Cu, Fe and Mn in the finial effluent of a sewage treatment works and its impact on speciation in receiving river. Water Research 15, 1053-1065. 46.Lin, Z., Puls, R. W., 2000. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology 39(7), 753-759. 47.Lindsay, W. L., 1979. Chemical Equilibria in Soils. John Wiley & Sons, New York, p. 10-33, p. 238-266, p. 315-327. 48.Marschner, H., 1995. Mineral Nutrition of Higher Plants (2nd ed.). Academic Press, San Diego, CA. 49.McBride, M. B., 1994. Environmental Chemistry of Soils. Oxford University Press, New York, p. 3-30, p. 121-168. 50.McBride, M., Sauve, S., Hendershot, W., 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. European Journal of Soil Science 48, 337-346. 51.McLaughlin, M. J., Singh, B. R., 1999. Cadmium in soil and Plants: a global perspective. In McLaughlin, M. J. and Singh, B. R. (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 13-21. 52.Meguellati, N., Robbe, D., Marchandise, P., Astruc, M., 1983. A new chemical extraction procedure in the fractionation of heavy metals in sediments — interpretation. Proceedings of the International Conference on Heavy Metals in the Environment, Edimburg CEP, Consulting, p. 1090-1093. 53.Miller, W. P., Maters, D. C., Zelazny, L. W., 1986. Effect of sequence in extraction of trace metals from soils. Journal of Soil Science 50, 598-601. 54.Naidu, R., Kookana, S., Sumner, M. E., Harter, R. D., Tiller, K. G., 1997. Cadmium sorption and transport in variable charges soils. Journal of Environmental Quality 26, 602-617. 55.Nelson, D. W. Sommers, L. E., 1982. Total carbon, organic carbon, and organic matter. Methods of soil analysis, PartⅡ(2nd ed.). In A. L. Page et al. (eds.), Soil Science Society of America Journal, Madison, Wisconsin, USA, p. 570-573. 56.Obrador, A., Rico, M. I., Mingot, J. I., Alvarez, J. M., 1997. Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures: effect of soil type and contact time. Science of the Total Environment 206, 117-126. 57.O’Neill, P., 1995. Arsenic (Section 2). Heavy Metals in Soils. In: Alloway, B.J. (Ed.), Blackie Academic & Professional, Glasgow, p. 83-99. 58.Onken, B. M., Hossner, L. R., 1996. Determination of Arsenic species in soil solution under flooded. Soil Science 60, 1385-1392. 59.Page, A. L., Bingham, F. T., Chang, A. C., 1981. Cadmium Effects of Heavy Metal Pollution on Plants: Effects of Trace Metals on Plant Function, In: Lepp, N. W. (Ed), Applied science publishing, London, New York, 1, p. 77-109. 60.Parker, D. R., Pedler, J. F., 1997. Reevaluating the free-ion activity model of trace metal availability to higher plants. Plant and Soil 196, 223-228. 61.Quastel, J. H., Scholefield, P. G., 1953. Arsenite oxidation in soils. Soil Science 75, 279-285. 62.Ramos, L., Hernandez, L. M., Gonzalez, M. J., 1994. Sequential fractionation of Copper, Lead, Cadmium and Zunc in soils from or near Donana National Park. Journal of Environmental Quality 23, 50-57. 63.Roychowdhury, T., Tokunaga, H., Uchino, T., Ando, M., 2005. Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere 58(6), 799-810. 64.Ruthven, D. M., 1984. Principles of Adsorption and Adsorption Processes. 29-30. 65.Sadiq, M., 1997. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water, Air and Soil Pollution 93, 117-136. 66.Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chen, I., Raskin, I., 1995. Phytoremediation: a novel strategy for removal of toxic metals from the environment using plants. Biotechnology 13, 468-474. 67.Sparks, D. L., 2003. Environmental Soil Chemistry. Academic Press, New York, p. 115-186. 68.Stoeppler, M, 2004. Arsenic (Part IV 6): Elements and their Compounds in the Environment, (2nd ed.), In Merian, E., Anke, M., Ihnat, M., Stoeppler, M. (eds.), Wiley-Vch Verlag GmbH & Co. KGaA, 3, p. 1321-1364. 69.Swartz, C. H., Blute, N. K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., Besancon, J., Islam, S. Hemond, H. F., Harvey, C. F., 2004. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochimica et Cosmochimica Acta 68, 4539-4557. 70.Takahashi, y., Minamikawa, R., Hattori, K. H., Kurishima, K., Kihou, N., Yuita, K., 2004. Arsenic Behavior in Paddy Fields during the cycle of flooded and non-flooded periods. Environmental Science 38, 1038-1044. 71.Tessier, A., Campbell, P. G. C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51, 844-851. 72.U.S. EPA, 1998. Microwave assisted acid digestion of aqueous samples and extracts. Method 3051A. 73.Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., Adriano, D. C., 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta 436(2), 309-323. 74.Wenzel, W. W., Blum, W. E. H., 1997. Biogeochemistry of trace metals: Advances in Environmental Sciences. In: Adriano, D. C., Chen, Z. S., Yang, S. S, Iskandar, I. K. (Eds.), Science Reviews, Northwood, p. 121. 75.World Health Organization (WHO), 2001. Environmental Health Criteria 224: Arsenic and Arsenic Compounds, Geneva. 76.Woolson, E. A., Axley, J. H., Kearney, P. C., 1973. The chemistry and phytotoxicity of arsenic in soils: II. Effects of time and phosphorus. Soil Science Society of America, 37, 254-259. 77.Wu, M. M., Kuo, T. L., Hwang, Y. H., 1989. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American Journal of Epidemiology 130, 1123-1132. 78.Xu, G., Zhan, X., Li, C., Bao, S., Liu, X., Chu, T., 2001. Assessing method of silicon in calcareous soils. Soil Science and Plant Analysis 32, 787-801. 79.Yrasad, M. N. V., Hagemeyer, J., 1999. Biogeochemical process in the rhizosphere: role in phytoremediation of metalpolluted sites: Heavy Metal Stress in Plants from Molecules to Ecosystem, p. 273-303. 80.Zeien, H., Brümmer, G., 1989. Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilgn. Deutsche Bodenkundliche Gesellschaft, 59/I, 505-510. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42625 | - |
dc.description.abstract | 關渡平原的水田土壤因早期(約20-250年前)引用含砷溫泉水灌溉而導致土壤受到砷污染,超過土壤砷含量管制標準(60 mg kg-1)的農地面積達128公頃。本研究以逐級萃取程序(SEP)分析水平表土與垂直剖面土壤中重金屬型態分佈之變化情形,藉由代表不同化學性質的萃取條件,模擬土體中重金屬型態分佈之吸附過程,依序為非特定吸附型態、特定吸附型態、無定形及弱結晶鐵鋁氧化物型態、強結晶鐵鋁氧化物型態與殘餘型態。結果顯示表層土壤在不同型態下的砷濃度分佈,係以無定形及弱結晶鐵、鋁氧化物型態與殘餘型態所佔比例較高。關渡平原水田表土砷的非特定吸附型態及特定吸附型態所佔比例較低(5%),濃度平均值分別為0.19 mg kg-1(0.03-0.41 mg kg-1)與4.9 mg kg-1(0.6-10 mg kg-1)。深層土壤(60-120公分)非特定吸附型態及特定吸附型態的砷濃度值高於相對應淺層土壤(0-30公分)。關渡平原長期受到水田耕作影響,造成淺層土壤的砷濃度含量,受到作物吸收、根圈吸附及淋洗作用而有降低趨勢。逐級萃取程序有助於理解受污染農地及土壤中重金屬的型態分佈、移動狀況及釋出機制,以評估土壤污染程度與影響。 | zh_TW |
dc.description.abstract | About 128 hectares of paddy soil was heavily contaminated at Guandu and exceeded the national standard of 60 mg As kg-1, due to irrigated with arsenic-rich hot spring water in the past 20-250 years. The purpose of this study is to analyze the form and the concentrations of arsenic and other heavy metals, including lead, silicon, iron, manganese and aluminum, of the horizontal and vertical contaminated paddy soil samples by using the sequential extraction procedure(SEP). The SEP could obtain five chemical fractionations: the non-specifically sorbed, specifically-sorbed, amorphous and poorly-crystalline hydrous oxides of Fe and Al, well-crystallized hydrous oxides of Fe and Al, and residual phases. These results showed that the amorphous and poorly-crystalline hydrous oxides of Fe and Al and residual phases dominated the arsenic fractionations of paddy soils. Only 5% non-specifically sorbed and specifically-sorbed were in the top-soils. The mean arsenic concentrations in the non-specifically sorbed phase and the specifically sorbed phase were 0.19 mg kg-1 (0.03-0.41 mg kg-1) and 4.9 mg kg-1 (0.6-10 mg kg-1). Notably, the arsenic value in the deep soils (60-120 cm) was higher than that in the top-soils (0-30 cm). Top-soil arsenic concentration decreases due to long-term of paddy cultivation, such as the crop absorption, adsorption of rhizosphere and leaching. Arsenic the demonstration of this case study, performing a SEP can target all potential primary chemical forms of arsenic in the soil solid phase, provide useful information to explain the agricultural land and soil heavy metal contamination, and then propose countermeasures. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:18:03Z (GMT). No. of bitstreams: 1 ntu-98-R96622015-1.pdf: 3309856 bytes, checksum: a7ba87aa7d6a8fe7c7fcacbe77109ed8 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 I 誌謝 II 中文摘要 III 英文摘要 IV 圖目錄 VII 表目錄 VIII 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究架構 2 第二章 文獻回顧 3 2.1 土壤環境中重金屬危害 3 2.2 土壤環境中重金屬流佈 4 2.2.1 移動行為 4 2.2.2 吸附反應 6 2.2.3 吸附型態 7 2.3 植體與重金屬的關係 8 2.4 砷的存在型態與條件 9 2.4.1 砷的存在型態 9 2.4.2 砷的存在條件 9 2.4.3 水田環境的砷 11 2.5 逐級萃取程序 12 2.5.1 逐級萃取應用 12 2.5.2 相關研究案例 15 第三章 材料方法 21 3.1 研究區域 21 3.2 實驗材料 22 3.2.1 材料選定 22 3.2.2 樣本採集與前處理 23 3.2.3 實驗藥品與設備 24 3.3 實驗方法 26 3.3.1 土壤基本性質 26 3.3.2 逐級萃取程序 27 3.3.3 重金屬多重萃取 28 第四章 結果與討論 29 4.1 土壤基本性質分析 29 4.2 土壤砷全量分析 31 4.3 水平表土砷型態分佈分析 33 4.4 水平表土相關性分析 44 4.4.1 砷型態分佈與土壤基本性質相關分析 44 4.4.2 砷型態分佈與其他重金屬相關分析 45 4.5 垂直剖面砷型態分佈分析 46 第五章 結論與建議 58 5.1 結論 58 5.2 建議 59 第六章 參考文獻 60 | |
dc.language.iso | zh-TW | |
dc.title | 利用逐級萃取程序分析關渡平原土壤砷之型態分佈 | zh_TW |
dc.title | Using Sequential Extraction Procedure to Analyze the Arsenic Form in the Contaminated Paddy Soils at Guandu | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張文亮,李達源,趙君行 | |
dc.subject.keyword | 砷,逐級萃取,型態分佈,關渡平原, | zh_TW |
dc.subject.keyword | Arsenic, Sequential extraction procedure,Chemical fractionation,Guandu Plain, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。