Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42624
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連雙喜
dc.contributor.authorWen-Sheng Wangen
dc.contributor.author王文聖zh_TW
dc.date.accessioned2021-06-15T01:18:01Z-
dc.date.available2014-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation[1] J.H Hirschenhofer, D.B. Stauffer, R.R. Engleman, M.G. Klett(eds.), Fuel Cell Handbook, November 2004, p7-7.
[2] S.C. Singhal, “Science and Technology of Solid-Oxide Fuel Cells”, MRS Bulletin, Volume March 2000, p16-21, March 2000.
[3] Nguyen Q. Minh, “Ceramic Fuel Cells”, Journal of the American Ceramic Society, Volume 76 Issue 3, March 1993, p563-798.
[4] Zhenguo Yang, “Recent advances in metallic interconnects for solid oxide fuel cells”, International Materials Reviews, Volume 53, Number 1, January 2008, p39-54.
[5] J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, M.G. Klett (Eds.), Fuel Cell Handbook , November 2004, p1-3.
[6] W.Z.Zhu, S.C.Deevi, “Opportunity of metallic interconnectors for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, Volume 38, Issue 6, 26 May 2003, p957-972.
[7] Zhenguo Yang, K. Scott Weil, Dean M. Paxton, and Jeff W. Stevenson, “Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications”, Journal of the Electrochemical Society, Volume 150, Issue 9 , September 2003, A1188-A1201.
[8] H.Ide, T.Yoshida, H . U e d a , N.Horiuchi, “Natural Gas Reformed Fuel Cell Power Generation Systems-A Comparison of Three System Efficiencies-”, The Institute of Electrical and Electronics Engineers, 1989, p1517-1522.
[9] A. Khandkar, S. Elangovan, “Planar SOFC Development Status”, Proceedings of the Second Annual Fuel Cells Contractors Review Meeting, June, 1991, p152.
[10] W.Z Zhu, S.C. Deevi, “Development of Interconnect Materials For Solid Oxide Fuel Cells”, Materials Science and Engineering: A, Volume 348, Issues 1-2, 15 May 2003, p227-243.
[11] M. Hsu, “Fuel cell seminar abstracts”, (Tucson, AZ., May 19-22﹐1985), Courtesy Associate, 1985, p57.
[12] M. Hsu, in: H.S.Isaacs, S.Srinivasan, I.L. Harry (Eds.), Proceedings of the Workshop on High-Temperature Solid Oxide Fuel Cells, Brookhaven National Laboratory, 1978, p127.
[13] Jeffrey W. Fergus, “Metallic interconnects for solid oxide fuel cells”, Materials Science and Engineering: A, Volume 391 , February 2005, p 271-283.
[14] Zhenguo Yang, Guan-Guang Xia, Chong-MinWang, Zimin Nie, Joshua Templeton, JeffryW. Stevenson, Prabhakar Singh, “Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications”, Journal of Power Sources, Volume 183, Issue 2, 2008, p660-667.
[15] P. Kofstad, in: B. Thorstensen (Ed.), Proceedings of Second European Solid Oxide Fuel Cell Forum, Volume 2, May 6-10, 1996, p479.
[16] J. Urbanek, M. Miller, H. Schmidt, K. Llipert, in: A.J. McEvoy (Ed.), Proceedings of Fourth European Solid Oxide Fuel Cell Forum, Volume 2, July 10-14, 2000, p503.
[17] D. Dulieu, J. Cotton, H. Greiner, in: P. Stevens (Ed.), Proceedings of Third European Solid Oxide Fuel Cell Forum, June 2-5, 1998, p447.
[18] A.S.Khanna, “Introduction to high temperature oxidation and corrosion”, 1st edition, ASM International, 2002.
[19] W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, “Metallic interconnectors for solid oxide fuel cells - a review”, Materials at High Temperatures, Volume 20, Number 2, May 2003, p115-127.
[20] W. J. Quadakkers, T. Malkow, J. Piron-Abellan, U. Flesch, V. Shemet and L. Singheiser, in: Proceedings of the 4th European SOFC Forum, Volume 2, 2000, p827-836.
[21] Zhenguo Yang, Guan-Guang Xia, Matthew S. Walker, Chong-Min Wang, Jeffry W. Stevenson, Prabhakar Singh, “High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient”, International Journal of Hydrogen Energy, Volume 32, Issue 16, November 2007, p3770-3777.
[22] P. Kofstad, “Nonstoichometry, Diffusion and Electrical Conductivity in Binary Metal Oxides”, Wiley-Intersicence, 1972, p133.
[23] Zigui Lu; Jiahong Zhu; Payzant, E. Andrew; Paranthaman, Mariappan P, ” Electrical Conductivity of the Manganese Chromite Spinel Solid Solution” , Journal of the American Ceramic Society, Volume 88 Issue 4, Apr2005, p1050-1053
[24] A.V. Virkar, D.M. England, US Patent 6054231 - Solid oxide fuel cell interconnector, April 25, 2000.
[25] M. Schuisky, A. Rosberg, L. Mikkelsen, P. Hendriksen, N. Christiansen and J. Gutzon Larsen, Proc. Fuel Cell Seminar, 2006.
[26] V. Shement, J. Piron-Abellan, W.J. Quadakkers, L. Singheiser,” Metallic Materials in Solid Oxide Fuel Cells”, Full Cell Technologies: State and Perspectives, 2005, p97-106.
[27] M. P. Brady, B. A. Pint, Z. G. Lu,_ J. H. Zhu, C. E. Milliken, E. D. Kreidler, L. Miller, T. R. Armstrong, and L. R. Walker,” Comparison of Oxidation Behavior and Electrical Properties of Doped NiO- and Cr2O3-Forming Alloys for Solid-Oxide, Fuel-Cell Metallic Interconnects”, Oxidation of Metals, Volume 65, April 2006, p237-p261
[28] D. Dulieu, J. Cotton, H. Greiner, K. Honegger, A. Scholten and T. Seguelong: Proc. 3rd European SOFC Forum, (ed. P. Stevens), 1998, p447-458.
[29] P. Hou and J. Stringer, “Oxide scale adhesion and impurity segregation at the scale/metal interface”, Oxidation of Metals, Volume 38, 1992, p323-345.
[30] B. Pint, “Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect”, Oxidation of Metals, Volume 45, 1996, p1-37.
[31] W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, “Metallic interconnectors for solid oxide fuel cells - a review”,Materials at High Temperatures , Volume 20, May 2003, p115-127.
[32] W.Z.Zhu, S.C.Deevi, “Opportunity of metallic interconnectors for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, Volume 38, Issue 6, 26 May 2003, p957-972.
[33] T. Brylewski , K. Przybylski , J. Morgiel, “Microstructure of Fe-25Cr/(La, Ca)CrO3 composite interconnector in solid oxide fuel cell operating conditions”, Materials Chemistry and Physics, Volume 81, 2003, p434-437
[34] Y.D. Zhen, San Ping Jiang , Sam Zhang, Vincent Tan, “Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells”, Journal of the European Ceramic Society, Volume 26 Issue15, 2006 , p3253-3264.
[35] Christopher Johnson, Randall Gemmen, Nina Orlovskaya, “Nano-structured self-assembled LaCrO3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material”, Composites Part B: Engineering, Volume 35 Issue 2, 2004, p167-172.
[36] Nina Orlovskaya , Anthony Coratolo , Mykola Lugovy ,Christopher Johnson, Randall Gemmen, “Structural evolution of La-Cr-O thin films: Part I. Microstructure and phase development”, Thin Solid Films, Volume 515 Issue 4, 2006, p1741-1747.
[37] S. Fontana , R. Amendola, S. Chevalier , P. Piccardob, G. Caboche, M. Viviani, R. Molins , M. Sennour, “Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys”, Journal of Power Sources, Volume 171 Issue 2 , 2007, p652-662.
[38] Zigui Lu, Jiahong Zhu, Ye Pana, Naijuan Wu , Alex Ignatiev, “Improved oxidation resistance of a nanocrystalline chromite-coated ferritic stainless steel”, Journal of Power Sources, Volume 178 Issue1 , 2008, p282-290.
[39] Nima Shaigan, Douglas G. Ivey,Weixing Chen, “Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects”, Journal of Power Sources, Volume 185 Issue1 , 2008, p331-337.
[40] Y.D. Zhen, San Ping Jiang , Sam Zhang, Vincent Tan, “Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells”, Journal of the European Ceramic Society Volume 26 Issue 15, 2006, p3253-3264.
[41] Zhenguo Yang , Guan-Guang Xia, Gary D. Maupin, Jeffry W. Stevenson, “Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications”,Surface & Coatings Technology, Volume 201 Issue 7, 2006, p4476-4483.
[42] Frank Tietz, Doris Sebold, “Interface reactions between electrically conductive ceramics and ferritic steel-I. The system Cr–22Fe–0.5Mn/Mn2O3/(La,Ca)(Cr,Co,Cu)O3”, Materials Science and Engineering: B, Volume 150 Issue 2, 2008, p135-140.
[43] S.-H. SONG, Z.-X. YUAN, “Electrical properties of MnCr2O4 spinel”, Journal of Materials Science Letters, Volume 22, 2003, p755- 757.
[44] Teruhisa Horita, Haruo Kishimoto, Katsuhiko Yamaji, Yueping Xiong, Natsuko Sakai,Manuel E. Brito, Harumi Yokokawa, “Effect of grain boundaries on the formation of oxide scale in Fe-Cr alloy for SOFCs”, Solid State Ionics, Volume 179, 2008, p1320-1324.
[45] Nima Shaigan, Douglas G. Ivey,Weixing Chen, ‘Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects”, Journal of Power Sources, Volume 185, 2008, p331-337.
[46] Zigui Lu, Jiahong Zhu, Ye Pan, Naijuan Wu, Alex Ignatiev, ‘Improved oxidation resistance of a nanocrystalline chromite-coated ferritic stainless steel”, Journal of Power Sources, Volume 178, 2008, p282-290.
[47] T. Brylewsk, J. D¹bek and K. Przybylski, “OXIDATION KINETICS STUDY OF THE IRON-BASED STEEL FOR SOLID OXIDE FUEL CELL APPLICATION”, Journal of Thermal Analysis and Calorimetry, Volume 77, 2004, p207-216.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42624-
dc.description.abstract為了發展適合固態氧化物燃料電池中的金屬連接板,抗高溫氧化合金是目前熱門的研究題目。其中鐵鉻錳合金是常見的金屬連接板材料。本論文將探討添加微量鈦、鉬、鈷、鑭元素對鐵鉻錳合金高溫性質所造成的影響。
實驗前預先以thermal-calc計算模擬合金相圖,並使用真空電弧熔煉爐配置所需的鐵-鉻-錳-鈦、鐵-鉻-錳-鉬、鐵-鉻-錳-鈷、以及鐵-鉻-錳-鑭合金。所得之合金先在900℃氬氣氣氛下均質化12小時,然後於850℃空氣氣氛下分別進行150小時與300小時不連續高溫氧化實驗。
高溫氧化實驗顯示添加鈷可以藉由減少鉻離子空位來改善抗氧化能力,反之添加鈦及鉬則會造成氧化加速進行。熱膨脹實驗結果顯示添加鈦、鉬、鈷皆可改善熱膨脹量。另外,電阻實驗結果顯示添加鈦和鈷可以大幅改善高溫電阻值,而鉬和鑭只能稍微改善高溫電阻值。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T01:18:01Z (GMT). No. of bitstreams: 1
ntu-98-R96527021-1.pdf: 13134771 bytes, checksum: 8979a4e718ee15b48265d5c7c7bf5a69 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
中文摘要 iii
Abstract iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 文獻回顧 2
2.1 連接板需具備的條件 2
2.2 金屬連接板 4
2.2.1 合金選擇 5
2.2.2 表面處理 6
2.3 氧化機制 8
2.3.1 熱力學 8
2.3.2 動力學 10
2.3.3 其他影響擴散之因素 13
第三章 實驗步驟與方法 14
3.1合金相圖計算 15
3.2熔煉合金與後續處理 16
3.2.1 合金配置 16
3.2.2 氬氣保護電弧熔煉(arc-melting)製做合金鑄錠 17
3.2.3 後續合金熱處理 18
3.3合金性質分析 19
3.3.1 合金成分分析 19
3.3.2 合金金相與其他性質 19
3.3.3 合金熱膨脹分析 20
3.3.4 電阻分析 20
3.4 高溫氧化實驗 20
3.5 高溫氧化試片分析 21
3.5.1 氧化試片表面SEM與EDS分析 21
3.5.2 氧化試片表面XRD繞射分析 21
3.5.3 氧化試片橫截面EPMA分析 21
第四章 結果與討論 22
4.1 合金模擬與金相 22
4.1.1 合金設計模擬 22
4.1.2 金相與XRD結果 27
4.2 高溫氧化測試 36
4.2.1 FeCrMn 37
4.2.2 FeCrMnTi 39
4.2.3 FeCrMnMo 41
4.2.4 FeCrMnCo 43
4.2.5 FeCrMnLa 45
4.2.6 高溫氧化行為的綜合討論 47
4.3 氧化試片表面與橫截面觀察 52
4.3.1 FeCrMn 52
4.3.2 FeCrMnTi 67
4.3.3 FeCrMnMo 77
4.3.4 FeCrMnCo 87
4.3.5 FeCrMnLa 97
4.3.6 表面形貌觀察的綜合討論 107
4.4 熱膨脹實驗 108
4.5 電阻測試 111
第五章 結論 113
第六章 參考文獻 114
附錄:Thermal-calc程式碼 118
dc.language.isozh-TW
dc.title添加微量鈦、鉬、鈷、鑭元素對鐵鉻錳合金高溫氧化行為之研究zh_TW
dc.titleEffects of minor Ti, Mo, Co, and La additions on the high temperature oxidation behavior of Fe-Cr-Mn alloyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李瑞益,林金福,陳鈞
dc.subject.keyword燃料電池,金屬連接板,鐵鉻錳合金,thermal-calc,高溫氧化,zh_TW
dc.subject.keywordSOFC,metallic interconnect,Fe-Cr-Mn alloy,thermal-calc,high temperature oxidation,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
12.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved