Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42617
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳鈞
dc.contributor.authorTai-Chi Chenen
dc.contributor.author陳泰吉zh_TW
dc.date.accessioned2021-06-15T01:17:50Z-
dc.date.available2014-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation1. 長谷川正義編,”不銹鋼便覽”,第1版,日刊工業新聞社,(1973)
2. Metal Handbook 9thed. Vol.3, ASM, 1980
3. E. Folkhard et. al., Welding Metallurgy of Stainless Steel, Springer-Verlagwien, 1988
4. F.B. Pickering, “Physical metallurgy and the design of steels”, Applied Science Publishers, 1978
5. B. Walden and J.M. Nicholls, Sandvik Steel Report, S51-54-ENG, 1994, 1-2.
6. K.Y. Kim, P.Q. Zhang, T.H. Ha, and Y.H. Lee, Corrosion, 54, 11(1998) 910.
7. K. Ichii and K Ota, Trans. Iron Steel Inst. Japan, 23(1983) 1019.
8. Ph. Lemble, A. Pineau and J.S. Castagne, “Temper embrittlement in 12% Cr martensite steel”, Metal Science, Aug. 1979, p.496
9. S. Hertzman, P.J. Ferrira, and B. Brolund, Metal. Trans. A, 28A(1997) 297.
10. K.J. Irvin, D.T. Llewellyn and F. B. Pickering, JISI, 199, (1961), p.153.
11. Angel T. JISI May 1954: 165.
12. Zackay VF, Parker ER, Fahr D, Busch R. Trans ASM 1967; 60:252
13. Olson GB, Cohen M. J Less-com Met 1972; 28: 107
14. Porter DA, Easterling KE. Phase transformations in metals and alloys. 2nd edition: Chapmam & Hall, London, 1993
15. Nishiyama Z. Martensitic transformation. In: Fine M, Meshii M, Wayman C, editors.
16. De AK Murdock DC, Mataya MC, Speer JG, Matlock DK. Scripta Mater 2004; 50: 1445.
17. Leal RH, Guimaraes JRC. Mater Sci Eng 1981; 48: 249.54.
18. Leffler B. Stainless steels and their properties 1996, Avesta Sheffield AB Research Foundation: Stockholm.
19. Johannsen, D.L., A. Kyrolainen, and P.J. Ferreira, Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 austenitic stainless steels. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2006. 37A(8): p. 2325-2338.
20. Eskandari, M., A. Kermanpur, and A. Najafizadeh, Formation of nano-grained structure in a 301 stainless steel using a repetitive thermo-mechanical treatment. Materials Letters, 2009. 63(16): p. 1442-1444.
21. Eskandari, M., et al., Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures. Materials & Design. In Press, Corrected Proof.
22. Karimi, M., et al., Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel. Materials Characterization. In Press, Corrected Proof.
23. Eskandari, M., A. Kermanpur, and A. Najafizadeh, Formation of nano-grained structure in a 301 stainless steel using a repetitive thermo-mechanical treatment. Materials Letters, 2009. 63(16): p. 1442-1444.
24. Peter Hedstrom and Magnus Oden, The use of High energy SAXS/WAXS for structural characterization of stainless steels. Division of Engineering Materials, Lulea University of Technology, SE-971 87 Lulea, Sweden.
25. Peter Hedstrom, In-situ studies of the martensitic transformation in metastable stainless steel AISI 301. Division of Engineering Materials, Lulea University of Technology, SE-971 87 Lulea, Sweden.
26. Hashimoto, M. and R.M. Latanision, THE ROLE OF DISLOCATIONS DURING TRANSPORT OF HYDROGEN IN HYDROGEN EMBRITTLEMENT OF IRON. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1988. 19(11): p. 2799-2803.
27. Zapffe, C.A. and C.E. Sims, Hydrogen embrittlement, internal stress and defects in steel. Transactions of the American Institute of Mining and Metallurgical Engineers, 1941. 145: p. 225-261.
28. Johnson, H.H., J.G. Morlet, and A.R. Troiano, HYDROGEN, CRACK INITIATION, AND DELAYED FAILURE IN STEEL. Transactions of the American Institute of Mining and Metallurgical Engineers, 1958. 212: p. 528-536.
29. Petch, N.J. and P. Stables, DELAYED FRACTURE OF METALS UNDER STATIC LOAD. Nature, 1952. 169(4307): p. 842-843.
30. Beachem, C.D., NEW MODEL FOR HYDROGEN-ASSISTED CRACKING (HYDROGEN EMBRITTLEMENT). Metallurgical Transactions, 1972. 3(2): p. 437-&.
31. Tien, J.K., et al., HYDROGEN TRANSPORT BY DISLOCATIONS. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1976. 7(6): p. 821-829.
32. Hashimoto, M. and R.M. Latanision, EXPERIMENTAL-STUDY OF HYDROGEN TRANSPORT DURING PLASTIC-DEFORMATION IN IRON. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1988. 19(11): p. 2789-2798.
33. Pressouyre, G.M. and I.M. Bernstein, QUANTITATIVE-ANALYSIS OF HYDROGEN TRAPPING. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1978. 9(11): p. 1571-1580.
34. Pressouyre, G.M., CLASSIFICATION OF HYDROGEN TRAPS IN STEEL. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1979. 10(10): p. 1571-1573.
35. Pressouyre, G.M. and I.M. Bernstein, KINETIC TRAPPING MODEL FOR HYDROGEN-INDUCED CRACKING. Acta Metallurgica, 1979. 27(1): p. 89-100.
36. G.M. Pressouyre, J.P. Fidelle, and R.A. Laurent, Hydrogen Effect in Metal, edit by I.M. Bernstein and A.W. Thompson, 1980, p.27
37. T.Toh and W.M Balwin, Stress Corrosion Cracking and Emrittlement, edit by W.D. Robertson, John Wiley and Sons, New York, 1956, p.326
38. V.R. Sawicki, PHD Dissertation, Cornell University, 1971
39. R.P. Gangloff, PHD Dissertation, Lehigh University, 1974
40. Williams, D.P. and H.G. Nelson, EMBRITTLEMENT OF 4130-STEEL BY LOW-PRESSURE GASEOUS HYDROGEN. Metallurgical Transactions, 1970. 1(1): p. 63-&.
41. Tien, J.K., et al., HYDROGEN TRANSPORT BY DISLOCATIONS. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1976. 7(6): p. 821-829.
42. A.W. Thompson, I.M. Bernstein, Adv. Corros. Sci. Tech., Vol.7, 1980, pp.53-175
43. A.W. Thompson, “Environment Sensitive Fracture of Engineering Materials”, ed. Z.A.Foroulis, Trns. Met., Soc. of AIME, 1979, p.379
44. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚 ”工程材料學”, 全華科技圖書股份有限公司
45. V.J. Colangelo and F.A. Heiser “Analysis of Metallurgical Failure” (1987)
46. A.A. Griffith “Philos. Trans. R. Soc.” London, vol. A221, (1920), p.163
47. G.R. Irwin “Fracture of Metal” American Society for Metals, Clereland, Ohio, (1949), p.147
48. P. Paris and F. Edrogan “A Critical Analysis of Crack Propagation Laws” ASME Journal of Basic Engineering, vol.85, No.4, (1963), pp.528-534
49. Neumann, F.E., “Die Gesetze der Deppelbrechung des Lichts in Conprtmierten und Ungleichforming erwarmte Unkrystallinischen Korpern.” Adh. Konigl, Alcad. Wiss. Berlin 2. Theil, 1841, p.1
50. Rheem, Karp Soon, “The Effect of Residual Stress on Fatigue Crack Propagation” U-M-I Dissertation Information Service, 1986, p.2
51. Forman, R.G., V.E. Kearney, and R.M. Engle, NUMERICAL ANALYSIS OF CRACK PROPAGATION IN CYCLIC-LOADED STRUCTURES. Journal of Basic Engineering, 1967. 89(3): p. 459-464.
52. G. Glinka, “Fracture Mechanic”, ASTM STP-677, 1979, pp.198~214
53. A. Lost. Int. J. Fatigue, vol.13, 1991, pp.25~33
54. Suresh, S. and Ritchie, R.O., “Propagation of Short Fatigue Cracks.” International Metallurgical Reviews, Vol.29, 1984, pp.445~476
55. “Failure Analysis and Prevention” Metal Handbook, ASM, vol.10, 1975, pp.110~111.
56. Olson, G.B. and M. Cohen, MECHANISM FOR STRAIN-INDUCED NUCLEATION OF MARTENSITIC TRANSFORMATIONS. Journal of the Less-Common Metals, 1972. 28(1): p. 107-118.
57. J.W. Hsu, S.Y. Tsi and H.C. Shih, “Hydrogen Embrittlement of SAF2205 Duplex Stainless Steel”, Corrosion-October 2002, Vol. 58, No.10, pp.858-862
58. C.Zener, in Fracturing of Metals, ASM, Metals Park, Ohio, 1948, p.3
59. C.A. Hippsley and C.E. Lane Mater. Sci. Technol. Vol.6, 1990, pp.735~742
60. J.C.M. LI, R.A. ORIANI and L. S. DARKEN Z. Phys. Chem. (Neue Folge) 49, (1996), p.71
61. Ritchie, R.O., J.F. Knott, and J.R. Rice, Relationship Bteween Critical Tensile Stress and Fracture Toughness in Mild-Steel. Journal of the Mechanics and Physics of Solids, 1973. 21(6): p. 395-410.
62. Singh, S. and C. Altstetter, Effect of Hydrogen Concentration on Slow Crack Growth in Stainless Steels. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1982. 13(10): p. 1799-1808.
63. Place, T.A., Sudarshan, T.S., Waters, C.K., and Louthan, M.R., Jr., “Fractographic Studies of the Ductile-to-Brittle Transition in Austenitic Stainless Steel,” Fractography of Modern Enginnering Materials: Composite and Metals, ASTM STP 948,J.E. Masters and J.J. Au Eds., American Society for Testing and Materials, Philadelphia, 1987, pp.350~365
64. D. Hull and J.L. Mogford, Phil. Mag., 3 (1958) 1213
65. A. Seeger, in Proc. AIME Symposium on Radiation Effect, TMS-AIME, New York, 1967, p.77
66. M.A. Meyers, K.K. Chawla, “Mechanical Metallurgy Principles and Applications,” p.505
67. Ming, G., S.C. Chen, and R.P. Wei, Crack Paths, Microstructure, and Fatigue Crack Growth In Annealed and Cold-Rolled AISI 304 Stainless Steels. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1992. 23(1): p. 355-371.
68. Huang, J.H. and C.J. Altstetter, Internal Hydrogen-Induced Subcritical Crack Growth In AusteniticC Stainless Steels. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1991. 22(11): p. 2605-2618.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42617-
dc.description.abstractAISI 301不銹鋼屬於介穩定型(Metastable)沃斯田鐵系不銹鋼,其Md30溫度約67℃,故於室溫下進行輥軋或拉伸時,易生成α'及ε兩種麻田散鐵組織。本研究探討AISI 301不銹鋼在加工後之顯微組織變化,並對不同加工程度的試片,進行空氣及氫環境中之缺口拉伸與疲勞試驗。此外,利用鐵磁性測定儀量測拉伸過程中α'相之生成量,並利用掃描式電子顯微鏡(SEM)輔以EBSD相鑑定探討相變態對破裂模式之影響。
氫環境中之缺口拉伸試驗結果顯示,母材(CR0)試片對氫脆的敏感性高,NTS loss最大,冷輥軋(CR30)試片次之,低溫熱輥軋(HR30)試片對氫的敏感性最低;而不同氫氣壓對CR0及HR30試片影響不大,但CR30試片之NTS loss則隨外在氫氣壓的升高而增大。在氫環境下,CR0試片之破斷面為明顯的沿晶破裂,HR30為穿晶劈裂,CR30則為兩者混合之破斷面形貌。破斷面邊緣之EBSD影像顯示,CR0試片拉伸時生成的α'相集中在晶界附近,HR30試片中α'相則在晶粒內部沿滑移帶生成。缺口拉伸試驗過程中,CR0試片在過降伏強度後,α'相緩慢增加;而HR30試片中之α'則在過降伏後快速生成。
空氣中疲勞試驗,試片之裂縫成長速度,依序為CR30>HR30>CR0試片,但CR0試片循環硬化的現象較為明顯,因此裂縫成長加速較快(Paris law中之m值較高)。而在氫環境中疲勞裂縫成長速度則為:HR30>CR30>CR0試片。EBSD的影像顯示,HR30試片疲勞裂縫前端之塑性區內會沿滑移帶產生α'相,加速氫環境時的疲勞裂縫成長速度。在空氣中試驗時,所有試片之疲勞破斷面均呈現穿晶破裂的形貌;然而在氫環境中,CR0及CR30試片的破斷面產生部分沿晶破裂,而HR30試片則仍維持穿晶破裂的模式。
zh_TW
dc.description.abstractAISI 301 stainless steel(SS), a metastable austenite SS, is commonly used in applications requiring severe forming operations such as screw, aircraft and rail car structural components. Since it has a high Md30 temperature(~ 67℃), the austenite (γ) phase can be transformed partly to α'- and ε-martensites during deformation at room temperature. In this study, the effects of cold work on the microstructure, notched tensile strength and fatigue crack growth behavior were carried out using variously cold-rolled specimens. Notched tensile and fatigue tests were conducted in atmosphere as well as in gaseous hydrogen to study the influence of hydrogen embrittlement on the mechanical properties of 301 SS specimens. Additionally, the SEM fractography and phase identification using electron backscatter diffraction(EBSD)of fractured specimens were examined, and the measurement of α' content was performed on cold-rolled specimens during the tensile tests.
The results of notched tensile tests indicated that the susceptibility to hydrogen embrittlement decreased in the order through the CR0 (base metal), CR30(cold-rolled at room temperature to 30% reduction in thickness), and HR30(cold-rolled at 150℃ to 30% reduction in thickness) specimens. The notched tensile strengths (NTSs)of the CR0 and HR30 specimens were independent of hydrogen pressure, while the NTS of the CR30 specimen reduced significantly as hydrogen pressure increased. The fracture surfaces of the CR0, HR30 and CR30 specimens in hydrogen exhibited intergranular, transgranular(cleavage)and mixed modes fractures, respectively. During the notched tensile test, the transformation of γ to α'-martensite was relatively slow in the CR0 specimens but rather fast in the HR30 specimens after yielding. EBSD phase identification in the region close to the fracture location revealed that α'-martensite was formed along the grain boundaries in the CR0 specimen and along slip bands in the HR30 specimen during the notched tensile test.
The fatigue crack growth rates (FCGRs)in air were found to be the CR0, HR30, and CR30 specimens in order of increasing FCGRs. Although the FCGR of the CR0 specimen was slowest, it increased rapidly with ∆K(stress intensity factor range)due to strongly cyclic hardening. For the specimens tested in gaseous hydrogen, the CR0 specimen had the lowest FCGR, while the HR30 specimen had the highest FCGR. The transformation of γ to α'-martensite was concentrated in the plastic zone ahead of the crack tip, resulting in an accelerated FCGR of the HR30 specimen in hydrogen. The influence of hydrogen embrittlement on the fracture appearance was particularly clear for the CR0 and CR30 specimens with the presence of intergranular fracture.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:17:50Z (GMT). No. of bitstreams: 1
ntu-98-R96527031-1.pdf: 14607626 bytes, checksum: 98610b54eb9a9a578047865c57d9e787 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
圖目錄 vii
表目錄 x
第一章 前言 1
第二章 文獻回顧 2
2-1 不銹鋼簡介 2
2-1-1 合金元素對不銹鋼之影響 3
2-1-2 γ系不銹鋼之強化機構 5
2-1-3 301不銹鋼之性質 7
2-2 氫脆理論簡介 10
2-2-1 氫脆機構 10
2-2-2 氫脆對材料機械性質之影響 14
2-3 疲勞裂縫成長試驗 14
2-3-1 殘留應力對da/dN之影響 21
2-3-2 顯微結構對da/dN之影響 23
第三章 實驗方法與程序 27
3-1 實驗材料 27
3-2 顯微組織觀察 27
3-2-1 金相及SEM 27
3-2-2 TEM觀察 27
3-2-3 EBSD觀察 30
3-3 機械性質測試 30
3-3-1 微硬度量測 30
3-3-2 缺口拉伸試驗 30
3-3-3 疲勞試驗 34
第四章 結果與討論 37
4-1 板材顯微組織觀察 37
4-2 缺口拉伸試驗 46
4-2-1 破斷面SEM觀察 59
4-2-2 缺口拉伸試驗結果探討 73
4-3 疲勞裂縫成長試驗 85
4-3-1 疲勞破斷面觀察 87
4-3-2 氫環境對疲勞之影響 99
4-4 氫環境對缺口拉伸及疲勞性質影響比較 104
第五章 結論 105
第六章 參考文獻 107
dc.language.isozh-TW
dc.title冷軋301不銹鋼在氫氣中之缺口拉伸強度及疲勞裂縫成長特性研究zh_TW
dc.titleNotched Tensile Strength and Fatigue Crack Growth Characteristics of Cold-Rolled 301 Stainless Steel in Gaseous Hydrogenen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡履文,薛人愷
dc.subject.keywordAISI 301不銹鋼,冷輥軋,麻田散鐵相變態,缺口拉伸強度,疲勞裂縫成長,氫脆,zh_TW
dc.subject.keywordAISI 301 stainless steel,cold rolling,martensitic transformation,notched tensile strength,fatigue crack growth,hydrogen embrittlement,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
14.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved