Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42611
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶源(Ching-Yuan Chang)
dc.contributor.authorYi-Ling Wuen
dc.contributor.author吳憶伶zh_TW
dc.date.accessioned2021-06-15T01:17:40Z-
dc.date.available2014-07-28
dc.date.copyright2009-07-28
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation1. Barbery, G. and Y. Bérubé, An Automated Method for Analysis of Dissolved Gases in Water at High Temperatures and Pressures. Ind. Eng. Chem. Fund., 10(4), 632-634 (1971).
2. Billod, C.R. and B.M. Faith, Wet Oxidation and Ozonation of Specific Organic Pollutants, EPA-6600/2-83-060, National Service Center for Environmental Publications, OH (1983).
3. Carlsson, P.A., L. Österlunda, P. Thormählen, A. Palmqvist, E. Fridell, J. Jansson and M. Skoglundh, A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts. J. Catal., 226, 422–434 (2004).
4. Chikazumi, S., Physics of Magnetism, John Wiley & Sons, Inc., New York, USA (1964).
5. Coffinet, S., C. Cossu-Leguille, A. Basseres, J.F. Gonnet and P. Vasseur, Response of the Bivalve Unio Tumidus and Freshwater Communities in Artificial Streams for Hazard Assessment of Methyl Methacrylate. Environ. Toxicol. Chem., 27(6), 1371-1382 (2008).
6. Debellefontaine H., and J.N. Foussard, Wet Air Oxidation for the Treatment of Industrial Wastes Chemical Aspects, Reactor Design and Industrial Applications in Europe. Waste Manage., 20(1), 15-25 (2000).
7. Ebner, N.A., C.S.G. Gomes, T.J. Hobley, O.R.T. Thomas and M. Franzreb, Filter Capacity Predictions for the Capture of Magnetic Microparticles by High-gradient Magnetic Separation. Ieee T. Magn., 43(5), 1941-1949 (2007).
8. Franzreb, M., M. Siemann-Herzberg, T.J. Hobley and O.R.T. Thomas, Protein Purification Using Magnetic Adsorbent Particles. Appl. Microbial. Biot., 70(5), 505-516 (2006).
9. Gad-Allah, T.A., K. Fujimura, S. Kato, S. Satokawa and T. Kojima, Preparation and Characterization of Magnetically Separable Photocatalyst (TiO2/SiO2/Fe3O4): Effect of Carbon Coating and Calcination Temperature. J. Hazard. Mater., 154 (1-3), 572–577 (2008).
10. Gift, J.S., Toxicological Review of Methyl Methacrylate. CAS 80-626. U.S. Environmental Protection Agency, Washington, DC (1998).
11. Gribanov, N.M., E.E. Bibik, O.V. Buzunov and V.N. Naumov, Physico-chemical Regularities of Obtaining Highly Dispersed Magnetite by the Method of Chemical Condensation. J. Magn. Magn. Mater., 85(1-3), 7-10 (1990).
12. Haarstrick, A., O.M. Kut, and E. Heinzle, TiO2-assisted Degradation of Environmentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor. Environ. Sci. Technol. 30(3), 817–824 (1996).
13. Han, X.X., R.X. Zhou, B.H. Yue and X.M. Zheng, Selective Hydrogenation of Cinnamaldehyde over Pt/ZrO2 Catalyst Modified by Cr, Mn, Fe, Co and Ni. Catal. Lett., 109(3-4), 157-161 (2006).
14. Hench, L.L. and J.K. West, The Sol-gel Process. Chem. Rev., 90(1), 33-72 (1990).
15. Huang, Y., T. Ma, J.L. Yang, L.M. Zhang, J.T. He and H.F. Li, Preparation of Spherical Ultrafine Zirconia Powder in Microemulsion System and Its Dispersibility. Ceram. Int., 30(5), 675-681 (2004).
16. Ilyas, M. and M. Sadiq, Liquid-Phase Aerobic Oxidation of Benzyl Alcohol Catalyzed by Pt/ZrO2. Chem. Eng. Technol., 30(10), 1391-1397 (2007).
17. Joshi, J.B., V.S. Mishra and V.V. Mahajani, Wet Air Oxidation. Ind. Eng. Chem. Res., 34(1), 2-48 (1995).
18. Karlin, K.D., Progress in Inorganic Chemistry, Vol. 51, 1st ed., Wiley-Interscience, Malden, MA, USA (2002).
19. Kim, K. D. and H. T. Kim, Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method. J. Sol-gel Sci. Techn., 25(3), 183-189 (2002).
20. Klinghoffer, A.A., R.L. Cerro and M.A. Abraham, Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst. Catal. Today, 40(1), 59-71 (1998).
21. Leggat, P.A. and U. Kedjarune, Toxicity of Methyl Methacrylate in Dentistry. Int. Dent. J., 53(3), 126-131 (2003).
22. Lei, L., X. Hu, H.P. Chu, G. Chen and P.L. Yue, Catalytic Wet Air Oxidation of Dying and Printing Wastewater. Water Sci. Technol., 35(4), 311-319 (1997).
23. Li, L., P.S. Chen and E.F. Gloyna, Generalized Kinetic Model for Wet Oxidation of Organic Compounds. AIChE J., 37(11), 1687-1697 (1991).
24. Liljelind, I.E., A. Hagenbjork-Gustafsson and L.O. Nilssonb, Potential Dermal Exposure to Methyl Methacrylate Among Dental Technicians; Variability and Determinants in a Field Study. J. Environ. Monitor., 11(1), 160-165 (2009).
25. Lin, J., A. Kawai and T. Nakajima, Effective Catalysts for Decomposition of Aqueous Ozone, Appl. Catal. B-Environ., 39(2), 157-165 (2002).
26. Liu, Q., An Innovative Approach in Magnetic Carrier Technology, Department of Mining and Metallurgical Engineering, McGill University, Montreal, Canada (1996).
27. Livage, J., K. Doi and C. Mazieres, Nature and Thermal Evolution of Amorphous Hydrated Zirconium Oxide. J. Am. Ceram. Soc., 51(6), 349-353 (1968).
28. Masende, Z.P.G., B.F.M. Kuster, K.J. Ptasinski, F.J.J.G. Janssen, J.H.Y. Katima and J.C. Schouten, Support and Dispersion Effects on Activity of Platinum Catalysts During Wet Oxidation of Organic Wastes. Top. Catal., 33(1-4), 87-99 (2005).
29. Meyer, A., S. Berensmeier and M. Franzreb, Direct Capture of Lactoferrin from Whey Using Magnetic Micro-ion Exchangers in Combination with High-gradient Magnetic Separation. React. Funct. Polym., 67(12), 1577-1588 (2007).
30. Mi, Y.H., X.B. Zhang, Z.Q. Yang, Y. Li, S.M. Zhou, H. Zhang, W.M. Zhu, D.L. He, J.L. Wang and Van Tendeloo G., Shape Selective Growth of Single Crystalline MnOOH Multipods and 1D Nanowires by a Reductive Hydrothermal Method. Mater. Lett., 61(8-9), 1781–1784 (2007).
31. Minh, D. P., P. Gallezot and M. Besson, Degradation of Olive Oil Mill Effluents by Catalytic Wet Air Oxidation-1. Reactivity of p-Coumaric Acid over Pt and Ru Supported Catalysts. Appl. Catal. B-Environ., 63(1-2), 68-75 (2006).
32. O’Connor, A.M., Y. Schuurman, J.R.H. Ross and C. Mirodatos, Transient Studies of Carbon Dioxide Reforming of Methane over Pt/ZrO2 and Pt/Al2O3. Catal. Today, 115(1-5), 191–198 (2006).
33. Okitsu, K., K. Higasi, Y. Nagata, T. Dohmaru, N. Takenaka, H. Bandow and Y. Maeda, Decomposition of p-Chlorophenol by Wet Oxidation in the Presence of Supported Noble Metal Catalysts. Chem. Abstr., 122, 22180 (1995).
34. Perkas, N., D.P. Minh, P. Gallezot, A. Gedanken and M. Besson, Platinum and Ruthenium Catalysts on Mesoporous Titanium and Zirconium Oxides for the Catalytic Wet Air Oxidationof Model Compounds. Appli. Catal. B-Environ, 59(1-2), 121–130 (2005).
35. Pigos, J.M., C.J. Brooks, G. Jacobs and B.H. Davis, Low Temperature Water–gas Shift: The Effect of Alkali Doping on the C–H Bond of Formate over Pt/ZrO2 Catalysts. Appl. Catal. A-Gen., 328(1), 14–26 (2007).
36. Pray, H.A., C.E. Schweickert and B.H. Minnich, Solubility of Hydrogen, Oxygen, Nitrogen, and Helium in Water. Ind. Eng. Chem., 44(5), 1146–1151 (1952).
37. Ramnani, S.P., S. Sabharwal, J. Vinod Kumar, K. Hari Prasad Reddy, K.S. Rama Rao and P.S. Sai Prasad, Advantage of Radiolysis over Impregnation Method for the Synthesis of SiO2 Supported Nano-Ag Catalyst for Direct Decomposition of N2O. Catal. Commun., 9(5), 756–761 (2008).
38. Ruppert, A.M. and T. Paryjczak, Pt/ZrO2/TiO2 Catalysts for Selective Hydrogenation of Crotonaldehyde: Tuning the SMSI Effect for Optimum Performance. Appl. Catal. A-Gen., 320, 80–90 (2007).
39. Satoh, T., M. Akitaya, M. Konno and S. Saito, Particle Size Distributions Produced by Hydrolysis and Condensation of Tetraethylrthosilicate. J. Chem. Eng. Jpn., 30(4), 759-762 (1997).
40. Schwertmann, U. and R.M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, 1st ed., VCH, Weinheim, New York, USA (1991).
41. Shang, N.C., Y.H. Chen, H.W. Ma, C.W. Lee, C.H. Chang, Y.H. Yu and C.H. Lee, Oxidation of Methyl Methacrylate from Semiconductor Wastewater by O3 and O3/UV Processes. J. Hazard. Mater., 147(1-2), 307–312 (2007).
42. Shie, J.L., C.Y. Chang, J.H. Chen, W.T. Tsai, Y.H. Chen, C.S. Chiou and C.F. Chang, Catalytic Oxidation of Naphthalene Using a Pt/Al2O3 Catalyst. Appli. Catal. B-Environ., 58(3-4), 289-297 (2005).
43. Takanabe, K., K.I. Aika, K. Seshan and L. Lefferts, Catalyst Deactivation During Steam Reforming of Acetic Acid over Pt/ZrO2. Chem. Eng. J., 120(1-2), 133–137 (2006).
44. Tibiletti, D., F.C. Meunier, A. Goguet, D. Reida, R. Burcha, M. Boarob, M. Vicario and A. Trovarelli, An Investigation of Possible Mechanisms for the Water–gas Shift Reaction over a ZrO2-supported Pt catalyst. J. Catal., 244(2), 183-191 (2006).
45. Wang, C., X.M. Zhang, X.F. Qian, Y. Xie, W.Z. Wang and Y.T. Qian, Preparation of Nanocrystalline Nickel Powders through Hydrothermal-reduction Method. Mater. Res. Bull., 33(12), 1747–1751 (1998).
46. Wang, L.K., Y.T. Hung and N.K. Shammas, Handbook of Environmental Engineering Volume 5-Advanced Physicochemical Treatment Technologies, Humana Press, Totowa, NJ, USA (2007).
47. Wright, J.D. and N.A.J.M. Sommerdijk, Sol-Gel Materials: Chemistry and Applications, 1st ed., Taylor & Francis, Oxford, UK (2000).
48. Yori, J.C., C.L. Pieck and J.M. Parera, n-Butane Isomerization on Pt/WO3-ZrO2: Effect of the Pt Incorporation. Appl. Catal. A-Gen., 181(1), 5-14 (1999).
49. 下飯坂達,「粉体液相中凝集分散」,粉体粉末冶金,12(6),263 (1966)。
50. 王世敏、許祖勛、傅晶編著,「奈米材料原理與製備」,五南出版,台北 (2004)。
51. 何雍,「儀器分析總整理」,鼎茂圖書出版社出版,第五版,台北 (2004)。
52. 呂宗昕,「圖解奈米科技與光觸媒」,商周出版,台北 (2003)。
53. 李奇威,「以臭氧與紫外光處理半導體製造業廢水中之甲基丙烯酸甲酯」國立台灣大學環境工程學研究所碩士論文,台北 (2002)。
54. 李長榮化學工業股份有限公司甲基丙烯酸甲酯物質安全資料表 (2003)。
55. 林炳宏,「化學氣相沉積法製備之Ti/SiO2觸媒催化丙烯環氧化反應的研究」東海大學化學工程學研究所碩士論文,台中 (2003)。
56. 張冠東、官月平、單國彬、安振濤、劉會洲,納米Fe3O4顆粒的表面包覆及其在磁性氧化鋁載體製備中的應用,過程工程學報,2,319 (2002)。
57. 許紫菱,「以奈米超順磁性二氧化鋯吸附處理陰離子溶液」國立台灣大學環境工程學研究所碩士論文,台北 (2006)。
58. 陳詩韻,「觸媒濕式催化分解DMP之硏究」國立台灣大學環境工程學研究所碩士論文,台北 (2008)。
59. 陳澄佑,「磁性流體的研製」國立清華大學材料科學研究所碩士論文,新竹 (1993)。
60. 游智宏,「可見光二氧化鈦奈米管製備、改質及光觸媒性質之研究」中原大學化學工程學系碩士論文,桃園 (2005)。
61. 楊國輝和廖淑慧著,「應用電磁學」,五南出版,台北 (2000)。
62. 蔡煥修,「磁性流體製程與性質之基礎研究」國立成功大學礦冶及材料科學研究所碩士論文,台南 (1992)。
63. 鄭清宗等,「工業減廢技術手冊塑膠製品工業」,經濟部工業局 (1998)。
64. 賴重儒,「反應條件對以擔體氧化鈰觸媒催化含酚廢水濕式氧化反應之影響」嘉南藥理科技大學環境工程與科學研究所碩士論文,台南 (2007)。
65. 閻子峰,「奈米催化技術」,五南出版,台北 (2004)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42611-
dc.description.abstract本研究以濕式氧化法(wet air oxidation, WAO)及催化濕式氧化法(catalytic WAO, CWAO)處理甲基丙烯酸甲酯(methyl methacrylate, MMA)。於CWAO中,使用自製磁性鉑觸媒(Pt/ZrO2/SiO2/Fe3O4, Pt/ZSM)進行MMA之催化氧化分解並與商用鉑觸媒Pt/γ-Al2O3之催化氧化效能進行比較。研究結果顯示WAO對MMA降解率(ηMMA)及化學需氧量(chemical oxygen demand, COD)礦化率(ηCOD)主要受溫度影響。反應溫度(TST)越高,MMA降解效果越顯著。於WAO中,當TST = 493 K,pO2 = 1.63 MPa (於參考溫度Trf = 493 K時,氧之分壓),及MMA初始濃度CMMA0 = 500 mg L-1,反應三小時後,ηMMA及ηCOD分別為87%及30%。
超順磁性鉑觸媒Pt/ZSM為次微米顆粒(100~200 nm),飽合磁化量為6.54 emu g-1,且具有高比表面積(67.46 m2 g-1)及高鉑含量(13.37 wt.% Pt)。其界達電位值(pHZPC)為4.7,故可有效吸附MMA經氧化反應後之中間產物有機酸,並可維持觸媒的催化效能。以添加六氯鉑酸(H2PtCl6.6H2O)之含浸法製備時,水熱還原法可將鉑完全還原;而氣態還原法之Pt以PtCl62-形式存在於表面,殘留的氯離子會影響催化反應。
以氧氣為工作氣體控制反應條件為TST = 453 K,pO2 = 1 MPa (Trf = 453 K)及觸媒添加量(mS) = 1 g時進行CWAO處理MMA及COD,氣態還原法觸媒HG-Pt/ZSM (ηMMA及ηCOD分別為29%及54%) 及水熱還原法觸媒HT-Pt/ZSM (ηMMA及ηCOD分別為46%及36%)之反應性與商用鉑觸媒Pt/γ-Al2O3 (ηMMA及ηCOD分別為39%及39%)相當。反應後之Pt/ZSM觸媒依舊具有超順磁性特性(6.5-7.3 emu g-1),故應用高梯度磁性分離機(high-gradient magnetic separation, HGMS)分離後,可將觸媒回收再利用,此為Pt/ZSM在固相分離時優於Pt/γ-Al2O3之處。
zh_TW
dc.description.abstractThis study investigated the treatment of methyl methacrylate (MMA) via wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) processes. A superparamagnetic platinum catalyst (Pt/ZrO2/SiO2/Fe3O4, Pt/ZSM) was used to promote the decomposition of MMA and compared with commercial platinum catalyst Pt/γ-Al2O3. Effects of major operating parameters on the system performances in terms of normalized concentrations of MMA and chemical oxygen demand (COD) were investigated. The operating parameters examined included the setting temperature (TST), partial pressure of O2 (pO2), initial concentration of MMA (CMMA0), amount of catalyst used (mS) and reaction time (t). The decomposition efficiencies of MMA and COD (ηMMA and ηCOD) can respectively reach 87 and 30% after 3 hr reaction time via WAO with reaction conditions at TST = 493 K, pO2 = 2.18 MPa (expressed as value at reference temperature Trf of 493 K) and CMMA0 = 500 mg L-1.
The Pt/ZSM exhibits particle size of around 100-200 nm, magnetization of 6.54 emu g-1, specific external surface area of 67.46 m2 g-1, and with high platinum content of 13.37 wt.%. The pHZPC of Pt/ZSM is 4.7 which is favorable for the effective adsorption of acid intermediates on the catalyst surface. The hydrothermal method can reduce the chloride content of the Pt/ZSM which is prepared by the impregnation of Pt precursor H2PtCl6.6H2O on the support of ZSM.
At TST = 453 K, pO2 = 1 MPa (Trf = 453 K), and mS = 1 g, the reactivities of HG-Pt/ZSM (Pt/ZSM with Pt reduced via H2 gas) (ηMMA = 29% and ηCOD = 54%) and HT-Pt/ZSM (Pt/ZSM with Pt reduced via hydrothermal method) (ηMMA = 46% and ηCOD = 36%) to decompose MMA and COD are as good as those of Pt/γ-Al2O3 (ηMMA = 39% and ηCOD = 39%). The Pt/ZSM catalyst still holds superparamagnetic property with saturation magnetization of 6.5-7.3 emu g-1 after being used in CWAO process. Thus the used Pt/ZSM can be separated via high-gradient magnetic separation (HGMS) fot the reuse.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:17:40Z (GMT). No. of bitstreams: 1
ntu-98-R96541104-1.pdf: 2818943 bytes, checksum: bbfcc7df1b01bfcd6913a221af1d3699 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xviii
符號說明 xix
第一章 緒論 1
1.1研究背景 1
1.2研究內容 2
1.3研究目的 3
第二章 文獻回顧 5
2.1磁性材料 5
2.1.1磁性的種類 5
2.1.2超順磁性(Superparamagnetic) 12
2.1.3鐵氧化物 13
2.2高梯度磁性分離機 16
2.2.1高梯度磁性分離機原理 16
2.2.2高梯度磁性分離機相關文獻 17
2.3磁性觸媒製備法 18
2.3.1化學共沉澱法(Coprecipitation) 18
2.3.2溶膠凝膠法 19
2.3.3含浸法(Impregnation) 26
2.3.4水熱法(Hydrothermal) 26
2.4濕式氧化法 28
2.4.1濕式氧化法原理 28
2.4.2濕式氧化法反應機制 30
2.4.3濕式氧化反應動力學 31
2.4.4濕式氧化反影響因素 32
2.4.5觸媒催化濕式氧化 33
2.5甲基丙烯酸甲酯 37
2.5.1甲基丙烯酸甲酯之來源 37
2.5.2甲基丙烯酸甲酯之特性 37
2.5.3甲基丙烯酸甲酯之相關處理文獻 39
第三章 實驗設備與研究方法 40
3.1 實驗藥品與材料 40
3.2設備 42
3.2.1磁性吸附劑之合成設備 42
3.2.2磁性分離機設備 42
3.2.3濕式氧化設備 42
3.2.4分析儀器設備 43
3.3實驗架構與進行步驟 44
3.3.1觸媒之製備 44
3.3.2磁性鉑觸媒之物理化學特性鑑定 48
3.3.3濕式氧化反應 49
3.3.4磁性分離機特性試驗 54
第四章 結果與討論 56
4.1超順磁性鉑觸媒之基本性質 56
4.1.1表面電位 56
4.1.2顆粒型態 60
4.1.3比表面積 63
4.1.4元素半定性分析 64
4.1.5顆粒磁滯曲線 68
4.1.6 XRD 70
4.1.7磁性鉑觸媒清洗步驟之氯離子濃度變化 73
4.2濕式氧化反應分解MMA 74
4.2.1 MMA濕式氧化分解機制之探討 74
4.2.2升溫程序對MMA分解之影響 75
4.2.3工作氣體種類之影響 79
4.2.4反應溫度之影響 79
4.2.5反應壓力之影響 83
4.2.6甲基丙烯酸甲酯初始濃度之影響 87
4.3觸媒濕式催化(CWAO)分解MMA 89
4.3.1 Pt/γ-Al2O3 89
4.3.2 Pt/ZSM 120
4.3.3 綜合比較 141
4.3.4濕式氧化後氯離子釋出試驗 146
4.3.5濕式氧化後回收之Pt/ZSM觸媒 147
4.3.6濕式氧化後觸媒之磁滯曲線 147
4.3.7濕式氧化後觸媒之XRD 150
4.3.8觸媒溶出試驗 158
4.4磁性分離機特性試驗 159
4.4.1進流水濃度影響 159
4.4.2進流水流速影響 161
第五章 結論與建議 164
5.1結論 164
5.1.1磁性鉑觸媒之物理化學特性 164
5.1.2濕式氧化程序 164
5.1.3 Pt/γ-Al2O3濕式催化氧化程序 165
5.1.4 Pt/ZSM濕式催化氧化程序 165
5.2建議 166
參考文獻 167
附錄A. EDX之半定性分析 a
附錄B. 觸媒溶出試驗ICP-OES e
附錄C. WAO反應溫度及壓力 l
附錄D. MMA之檢量線 w
附錄E. 實驗數據 y
dc.language.isozh-TW
dc.subject甲基丙烯酸甲酯zh_TW
dc.subject濕式氧化zh_TW
dc.subject濕式催化分解zh_TW
dc.subject鉑觸媒zh_TW
dc.subject超順磁性zh_TW
dc.subject水熱還原法zh_TW
dc.subjectreductive hydrothermal methoden
dc.subjectmethyl methacrylateen
dc.subjectWet air oxidation (WAO)en
dc.subjectcatalytic wet air oxidation (CWAO)en
dc.subjectPt catalysten
dc.subjectsuperparamagneticen
dc.title磁性觸媒應用於催化濕式氧化程序處理水中溶解性污染物之研究zh_TW
dc.titleApplication of Magnetic Catalyst for Catalytic Wet Air Oxidation of Organics in Aqueous Solutionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張瓊芬(Chiung-Fen Chang),張奉文(Feg-Wen Chang)
dc.subject.keyword濕式氧化,濕式催化分解,鉑觸媒,超順磁性,水熱還原法,甲基丙烯酸甲酯,zh_TW
dc.subject.keywordWet air oxidation (WAO),catalytic wet air oxidation (CWAO),Pt catalyst,superparamagnetic,reductive hydrothermal method,methyl methacrylate,en
dc.relation.page173
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved