Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42588
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張芳嘉(Fang-Chia Chang)
dc.contributor.authorHan-Han Changen
dc.contributor.author張涵涵zh_TW
dc.date.accessioned2021-06-15T01:17:03Z-
dc.date.available2011-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation1. Zhang L, Xing D, Wang W, Wang R, Du L. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract. J Ethnopharmacol 2006;103(1):120-5.
2. Chen X, Wang H, Du Y, Zhong D. Quantitation of the flavonoid wogonin and its major metabolite wogonin-7β-D-glucuronide in rat plasma by liquid chromatographytandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002;775(2):169-78.
3. Hui KM, Huen MS, Wang HY, Zheng J, Sigel E, Baur R, Ren H, Li ZW, Wong TF, Xue H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol 2002;64(9):1415-24.
4. Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ, Choi WS, Suk K. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J 2003;17(13):1943-4.
5. Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1999;1427 (3):643-50.
6. Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 2009;35(1):57-68.
7. Krakauer T, Li BQ, Young HA. The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS Lett 2001;500(1-2):52-5.
8. Chou TC, Chang LP, Li CY, Wong CS, Yang SP. The anti-inflammatory and analgesic effects of baicalin in carrageenen-evoked thermal hyperalgesia. Anesth Analg 2003;97(6):1724-9.
9. Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM. Flavonoid Baicalin Inhibits HIV-1 Infection at the Level of Viral Entry1. Biochem Biophys Res Commun 2000;276(2):534-8.
10. Wang F, Xu Z, Ren L, Tsang SY, Xue H. GABAA receptor subtype selectivity underlying selective anxiolytic effect of baicalin. Neuropharmacology 2008; 55(7):1231-7.
11. Kim YO, Leem K, Park J, Lee P, Ahn DK, Lee BC, Park HK, Suk K, Kim SY, Kim H. Cytoprotective effect of Scutellaria baicalensis in CA1 hippocampal neurons of rats after global cerebral ischemia. J Ethnopharmacol 2001;77(2-3):183-8.
12. Li BQ, Fu T, Gong WH, Dunlop N, Kung H, Yan Y, Kang J, Wang JM. The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines. Immunopharmacology 2000;49(3): 295-306.
13. Lee HH, Yang LL, Wang CC, Hu SY, Chang SF, Lee YH. Differential effects of natural polyphenols on neuronal survival in primary cultured central neurons against glutamate- and glucose deprivation-induced neuronal death. Brain Res 2003;986(1-2):103-13.
14. Tu XK, Yang WZ, Shi SS, Wang CH, Chen CM. Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia. Neurochem Res 2009 Mar 18.
15. Tsai CC, Lin MT, Wang JJ, Liao JF, Huang WT. The antipyretic effects of baicalin in lipopolysaccharide-evoked fever in rabbits. Neuropharmacology 2006;51(4):709-17.
16. Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 2006;38(4):333-7.
17. Liu B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS J 2006;8(3):E606-21.
18. Sawada M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson's disease. J Neural Transm Suppl. 2006;(70):373-81.
19. Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, Marler JR. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment. Neurology 2003;60(8):1234-40.
20. Yi PL, Tsai CH, Lu MK, Liu HJ, Chen YC, Chang FC. Interleukin-1beta mediates sleep alteration in rats with rotenone-induced parkinsonism. Sleep 2007;30(4):413-25.
21. Li FQ, Wang T, Pei Z, Liu B, Hong JS. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. J Neural Transm 2005;112(3):331-47.
22. Wang F, Shing M, Huen Y, Tsang SY, Xue H. Neuroactive flavonoids interacting with GABAA receptor complex. Curr Drug Targets CNS Neurol Disord 2005;4(5):575-85.
23. Krueger JM, Obál F, JR., Fang J, Kubota T, Taishi P. The role of cytokines in physiological sleep regulation. Ann N Y Acad Sci 2001;933:211-21.
24. Kapsimalis F, Richardson G, Opp MR, Kryger M. Cytokines and normal sleep. 2005;11(6):481-4.
25. Krueger JM. The role of cytokines in sleep regulation. Curr Pharm Des 2008;14(32):3408-16.
26. Yasuda T, Yoshida H, Garcia-Garcia F, Kay D, Krueger JM. Interleukin-1beta has a role in cerebral cortical state-dependent electroencephalographic slow-wave activity. Sleep 2005;28(2):177-84.
27. Yoshida H, Peterfi Z, García-García F, Kirkpatrick R, Yasuda T, Krueger JM. State-specific asymmetries in EEG slow wave activity induced by local application of TNFalpha. Brain Res 2004;1009(1-2):129-36.
28. Gabel CA. P2 purinergic receptor modulation of cytokine production. Purinergic Signal 2007;3(1-2):27-38.
29. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F. The P2X7 receptor: A key player in IL-1 processing and release. J Immunol 2006;176(7):3877-83.
30. Bianco F, Pravettoni E, Colombo A, Schenk U, Möller T, Matteoli M, Verderio C. Astrocyte-derived ATP induces vesicle shedding and IL-1beta release from microglia. J Immunol 2005;174(11):7268-77.
31. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 2000;75(3):965-72.
32. Szymusiak R, Gvilia I, McGinty D. Hypothalamic control of sleep. Sleep Med 2007;8(4):291-301.
33. Chang FC, Opp MR. Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am J Physiol 1998;275(3 Pt 2):R793-802.
34. Opp MR. Rat strain differences suggest a role for corticotropin-releasing hormone in modulating sleep. Physiol Behav 1997;63(1):67-74.
35. Steiger A. Neurochemical regulation of sleep. J Psychiatr Res 2007;41(7):537-52.
36. Epstein AM, Fitzsimons JT, Rolls BJ. Drinking induced by injection of angiotensin into the brain of the rat. J Physiol 1970;210(2):457-74.
37. Kubota T, Kushikata T, Fang J, Krueger JM. Nuclear factor-κB inhibitor peptide inhibits spontaneous and interleukin-1β-induced sleep. Am J Physiol Regul Integr Comp Physiol 2000;279(2):R404-13.
38. Shoham S, Davenne D, Cady AB, Dinarello CA, Krueger JM. Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. Am J Physiol 1987;253(1 Pt 2):R142-9.
39. Fang J, Wang Y, Krueger JM. Effects of interleukin-1β on sleep are mediated by the type I receptor. Am J Physiol 1998;274(3 Pt 2):R655-60.
40. Park HG, Yoon SY, Choi JY, Lee GS, Choi JH, Shin CY, Son KH, Lee YS, Kim WK, Ryu JH, Ko KH, Cheong JH. Anticonvulsant effect of wogonin isolated from Scutellaria baicalensis. Eur J Pharmacol. 2007;574(2-3):112-9.
41. Chang FC, Opp MR. Corticotropin-releasing hormone (CRH) as a regulator of waking. Neurosci Biobehav Rev 2001;25(5):445-53.
42. Chang FC, Opp MR. IL-1 is a mediator of increases in slow-wave sleep induced by CRH receptor blockade. Am J Physiol Regul Integr Comp Physiol 2000;279(3):R793-802.
43. Yi PL, Tsai CH, Chen YC, Chang FC. Gamma-aminobutyric acid (GABA) receptor mediates suanzaorentang, a traditional Chinese herb remedy, -induced sleep alteration. J Biomed Sci 2007;14(2):285-97.
44. Omdal R, Gunnarsson R. The effect of interleukin-1 blockade on fatigue in rheumatoid arthritis—a pilot study. Rheumatol Int 2005; 25(6):481-4.
45. Moldofsky H. Sleep, neuroimmune and neuroendocrine functions in fibromyalgia and chronic fatigue syndrome. Adv Neuroimmunol 1995;5(1):39-56.
46. Opp MR, Krueger JM. Interleukin 1 receptor antagonist blocks interleukin 1-induced sleep and fever. Am J Physiol 1991; 260(2 Pt 2): R453-7.
47. Opp MR, Postlethwaite AE, Seyer JM, Krueger JM. Interleukin 1 receptor antagonist blocks somnogenic and pyrogenic responses to an interleukin 1 fragment. Proc Natl Acad Sci USA 1992; 89(9):3726-30.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42588-
dc.description.abstractBaicalin及Wogonin為中國傳統草藥黃芩 (Scrutellaria baicalensis Georgi) 之成分,傳統常使用在消炎、腸胃不適、抗過敏、解熱及鎮靜,近年來研究指出其有抗菌、抗病毒、抗腫瘤、抗發燒 (antipyretic)、神經保護、及解焦慮等作用。近年來,已有許多黃芩成分相關機制的研究,有些報告指出,Baicalin能夠有效的清除多種自由基,且Baicalin及Wogonin能藉由抗氧化作用幫助神經細胞抵抗氧化壓力的傷害,而Baicalin及Wogonin也能抑制微膠細胞 (microglia cells) 活化,使NF-κB的活化量下降,降低cytokines及chemokines分泌量及RNA的表現量。也有報告指出,Baicalin及Wogonin是GABAA受體的擬效劑 (agonists),能夠與受體上的BZ結合位 (Benzodiazepine binding site) 結合,因其沒有鎮靜及認知缺損的副作用,因此受到了醫學界的重視。由於在正常睡眠的調控機制上,IL-1β、TNF-α及GABA皆與睡眠的內分泌調控作用密不可分,由其是在Non-rapid eye movement sleep (NREMS) 方面,但Baicalin及Wogonin對睡眠的影響至今尚未有任何相關研究報告。本實驗的目的是觀察黃芩主成分Baicalin與Wogonin對大鼠正常睡眠的影響,進一步探討其內在作用機制,並尋求在睡眠醫學上可能的應用方式。
在我們的研究結果中,發現Baicalin及Wogonin對正常睡眠具有兩個階段的作用,第一個階段是打藥後的第1~2個小時,使NREMS下降,我們稱之為初期 (initiate phase) 的作用。第二個階段是在第7~12個小時,使NREMS大幅度上升的作用,稱之為晚期 (late phase) 的作用。而initiate phase的作用,主要是在Light-onset的實驗結果中出現。在Late phase的作用,則是在Dark-onset的實驗結果中較容易看到,於Light-onset的實驗中則較不明顯。因此,我們假設在Light-onset的作用是與亮期時腦中的IL-1β或TNF-α的量或作用程度被改變所導致。而在同時打入IL-1β及Baicalin之後的NREMS,與單獨打入IL-1β的NREMS比較,有明顯下降的情形,Wogonin亦有相同的結果。而在IL-1β的ELISA結果中,我們發現,在打入Baiclin之後的第二個小時,下視丘 (hypothalamus)、海馬迴 (hippocampus) 及皮質 (cortex) 處的IL-1β的量都沒有明顯改變。而關於晚期的作用,我們假設其有可能是經由GABAA受體的作用或是經由某些機制使GABA的分泌量所造成。我們觀察在Dark-onset先打入Baicalin或Wogonin,待其作用至第七個小時,再給予GABAA及GABAB的拮抗劑 (antagonists)。之後的結果發現,wogonin的NREMS上升作用,有被GABAA的拮抗劑所抵銷。
在此研究中,結果中證明了初期的作用極有可能是藉由IL-1β受體受到Baicalin及Wogonin的阻抗所造成的。而GABA組的實驗結果說明了,Wogonin的晚期作用可能是藉由增加GABA的分泌量,而使NREMS有增加的結果。
zh_TW
dc.description.abstractBaicalin and wogonin are active compounds originated from the root of traditional Chinese herb Scrutellaria baicalensis Georgi. They have been used in anti-inflammation, anti-bacteria, anti-hypertension, anti-allergy and sedative actions since ancient China. Baicalin and wogonin possess abilities to decrease the expression of pro-inflammatory cytokines and NF-κB activity. It has been described that baicalin and wogonin are both the free radical scavengers and exhibit anti-inflammatory activity. It has also been demonstrated that the anxiolytic-like effect of baicalin is mediated by GABAA receptors. The activity of GABAergic sleep-active neurons is related to sleep regulation. In the homeostatic sleep regulation, cytokines, especially IL-1β and TNF-α, plays an important role in the regulation of slow wave sleep (SWS). However, there is a lack of evidence linking baicalin and wogonin to the sleep regulation. The purpose of this study is investigating the underlying mechanism of baicalin and wogonin on spontaneous sleep.
We respectively i.c.v. injected baicalin and wogonin into brain and EEG-defined sleep-wake activities were collected. Our results indicated that both baicalin and wogonin exhibited a biphasic effect on spontaneous sleep, a initiate phase and a late phase of sleep regulation. In the initiate phase, the time spent in SWS during hours 1~2 of the light period were decreased from 63.19 ± 3.62 %, obtained after vehicle (DMSO), to 47.73 ± 6.88 % acquired after administration of baicalin 20 mins prior to light onset. Besides, the time spent in SWS were increased during hours 8~12 of dark period from 17.03 ± 1.86 %, obtained after DMSO, to 26.6 ± 2.63 % acquired after injection of baicalin prior to dark onset. Wogonin also exhibited a similar sleep-wake regulation as that of baicalin. When we administrated Baicalin+IL-1β,we investigated the increasing of NREMS of IL-1β disappeared. When wogonin+IL-1β was given, the effects on NREMS was the same. And the IL-1β ELISA result demonstrated the IL-1β concentration of hypothalamus, hippocampus and cortex was not changed after administration of baicalin. After we injected wogonin at dark-onset and injected GABAA antagonist, bicuculline, or GABAB antagonist, 2-hydroxysaclofen, during the middle of dark period (7th hour), the increasing of NREMS of wogonin’s effect decreased
The observation elucidated that both wogonin and baicalin exhibited dual responses to regulate sleep-wake activity; an initiate phase to suppress SWS during the light period and a late phase to enhance SWS during the dark period. We demonstrated that the anti-inflammatory effect of wogonin and baicalin may be involved in the regulation of the initial phase. they may be interfere the function of IL-1β receptor or blocked it. And wogonin may be somehow have some mechanism to interfere the secretion of GABA in the brain of the late phase response.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:17:03Z (GMT). No. of bitstreams: 1
ntu-98-R96629034-1.pdf: 1351792 bytes, checksum: 4e868d973abf48f5b7f073b315f02d93 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents壹、目錄
頁次
中文摘要…………………………………………………………………………………i
英文摘要………………………………………………………………………………iii
1. 研究背景及目的 ……………………………………………………………………1
1.1 傳統用法及藥物基本性質…………………………………………………………1
1.1.1 傳統用法及藥物基本性質………………………………………………………1
1.1.2 研究文獻…………………………………………………………………………2
1.2 正常睡眠調節………………………………………………………………………6
1.2.1 睡眠與細胞素……………………………………………………………………6
1.2.2 GABAergic神經元及GABAA受體擬效劑對睡眠的影響…………………………8
1.2.3 腎上腺皮質軸與睡眠……………………………………………………………9
1.3 實驗目的……………………………………………………………………………9
2. 材料與方法 …………………………………………………………………………10
2.1 實驗動物……………………………………………………………………………10
2.2 手術…………………………………………………………………………………10
2.3 實驗用藥……………………………………………………………………………11
2.4 腦波記錄及分析……………………………………………………………………12
2.4.1 Spontaneous sleep組 …………………………………………………………12
2.4.2 IL-1β組…………………………………………………………………………13
2.4.3 GABA antagonist組 ……………………………………………………………13
2.5 酵素結合免疫吸附試驗 (ELISA) ………………………………………………14
2.6 統計學分析…………………………………………………………………………15
3. 實驗結果 ……………………………………………………………………………16
3.1 Baicalin及wogonin對大鼠正常睡眠之影響 ……………………………………16
3.1.1 Light-onset組 …………………………………………………………………16
3.1.2 Dark-onset組……………………………………………………………………16
3.1.3 雙相作用 (Biphasic effects) ………………………………………………17
3.2 Baicalin及wogonin與IL-1β受體之交互影響 …………………………………17
3.3 GABAA antagonist組大鼠睡眠之改變結果………………………………………18
3.4 睡眠結構……………………………………………………………………………18
3.4.1 Baicalin及wogonin在light-onset正常睡眠的作用…………………………18
3.4.2 Baicalin及wogonin在dark-onset正常睡眠的作用 …………………………18
3.4.3 IL-1β組…………………………………………………………………………18
3.4.4 GABA組……………………………………………………………………………19
3.5 L-1β ELISA ………………………………………………………………………19
4. 討論 …………………………………………………………………………………20
5. 結論 …………………………………………………………………………………27
6. 參考文獻 …………………………………………………………………………50
貳、圖目錄
Fig. 1 Baicalin與wogonin結構式……………………………………………………28
Fig. 2 腦中各項因子與NREM睡眠關係圖 ……………………………………………29
Fig. 3 EEG手術植入物品位置示意圖…………………………………………………29
Fig. 4 Spontaneous組 (light-onset) 打藥日程圖 ………………………………30
Fig. 5 Spontaneous sleep組 (dark period) 打藥日程表 ………………………30
Fig. 6 IL-1β組打藥日程圖 …………………………………………………………31
Fig. 7 GABA antagonist組打藥日程圖………………………………………………32
Fig. 8 Baicalin在light-onset對睡眠之改變情形…………………………………33
Fig. 9 Wogonin在light-onset對睡眠之改變情形 …………………………………34
Fig. 10 Baicalin及wogonin在light-onset第1 ~ 2小時NREMS變化情形…………35
Fig. 11 Baicalin在dark-onset對正常睡眠的作用…………………………………36
Fig. 12 Wogonin在dark-onset對正常睡眠的作用 …………………………………37
Fig. 13 Baicalin及wogonin在dark-onset第7 ~ 10小時NREMS變化情形…………38
Fig. 14 IL-1β對NREM睡眠百分比之影響……………………………………………39
Fig. 15 IL-1β與雙劑注射baicalin + IL-1β於dark-period對睡眠之影響……40
Fig. 16 IL-1β與雙劑注射wogonin + IL-1β於dark-period對睡眠之影響 ……41
Fig. 17 Baiclain + IL-1β或wogonin + IL-1β對第1 ~ 8小時NREMS量之比較 42
Fig. 18 Wogonin與GABAA antagonist:bicuculline對睡眠之交互作用…………43
Fig. 19 Baicalin施打後兩個小時各腦區IL-1β表現情形…………………………44
Table 1. 各種細胞動素對NRMES影響之關係表………………………………………45
Table 2. Bacicalin與wgonin在lght-onset實驗對睡眠結構的影響………………46
Table 3. Baicalin與wogonin在dark-onset實驗對睡眠結構的影響………………47
Table 4. 雙劑注射baicalin、wogonin及IL-1β對睡眠結構的影響………………48
Table 5. Baicalin或wogonin與GABA antagonist對睡眠結構的影響 ……………49
dc.language.isozh-TW
dc.subjectGABAzh_TW
dc.subject黃芩 (Scrutellaria baicalensis Georgi)zh_TW
dc.subjectBaicalinzh_TW
dc.subjectWogoninzh_TW
dc.subject睡眠zh_TW
dc.subjectIL-1βzh_TW
dc.subjectScrutellaria baicalensis Georgien
dc.subjectGABAen
dc.subjectIL-1βen
dc.subjectsleepen
dc.subjectWogoninen
dc.subjectBaicalinen
dc.title黃芩苷及漢黃芩素對睡眠調節影響之探討zh_TW
dc.titleEffects of baicalin & wogonin in the regulation of spontaneous sleepen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐崇堯(Chung-Yao Hsu),詹東榮(Tong-Rong Jan),林中天(Chung-Tien Lin)
dc.subject.keyword黃芩 (Scrutellaria baicalensis Georgi),Baicalin,Wogonin,睡眠,IL-1β,GABA,zh_TW
dc.subject.keywordScrutellaria baicalensis Georgi,Baicalin,Wogonin,sleep,IL-1β,GABA,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved