請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 樓國隆 | |
| dc.contributor.author | Tsung-Wei Su | en |
| dc.contributor.author | 蘇琮為 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:16:54Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | Abeyama K., Stern D. M., Ito Y. (2005) The N-terminal domainof thrombomodulin sequesters high-mobility group-B1 protein, a novel anti-inflammatory mechanism. J. Clin. Invest 115: 1267-1274.
Bajzar L, Manuel R, Nesheim M. (1995) Purification and characterization of TAFI, a thrombin-activatable fibrinolysis inhibitor. J. Biol. Chem. 270:14477–14484. Bernardez D. ,Clark E. (1998) Refolding of recombinant proteins. Current Opinion Biotechnol. 9: 157-163. Boffa M. C, Burke B,Haudenschild CC. (1987) Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J.Histochem. Cytochem. 35:1267-1276. Bruce G, Hassell T., Vlahos C. J., Parkinson J. F., Bang N. U. and Grinell B. W. (1993) Identification of the predominant glycosaminoglycan-attachment site in soluble recombinant human thrombomodulin: potential regulation of functionality by glycosyltransferase competition for serine. Biochem. J. 295:131-140 Cereghino J. L., Cregg J. M. (2002) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews. 24: 45~66. Christopher D. P., Hammel M., Hura G. L.and Tainer J. A. (2007) X-ray solution scattering (SAXS) combinedwith crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys. 40: 191–285 Conway E. M., Boffa M.C., Nowakowski B, Steiner-Mosonyi M. (1992) An ultrastructural study of thrombomodulin endocytosis: internalization occurs via clathrin-coated and non-coated pits. J. Cell. Physiol. 151(3):604-12. David R. L., Glaser C. B., Betts M., Blasko E., Campbell E., Clarke J. H., McCaman M., McLean K., Nagashima M., John F. P., Galina R., Young T. and Morser J. (1999) The interaction of thrombomodulin with Ca2+. Eur. J. Biochem 262: 522-533 Dixon, R. A. F., Kobilka, B. K., Strader. (1986) Cloning of the gene and cDNA for mammalian adrenergic receptor and homology with rhodopein. Nature 321: 75-79. Drickamer K. (1999) C-type lectin-like domains. Current Opinion in Structural Biology 9:585–590 Dodd R. B. and Drickamer K. (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11:71-79. Edward M. C. , Wouwer M. V., Pollefeyt S. ( 2002) The Lectin-like Domain of Thrombomodulin Confers Protection from Neutrophil-mediated Tissue Damage by Suppressing Adhesion Molecule Expression via Nuclear Factor B and Mitogen-activated Protein Kinase Pathways. J. Exp. Med. 196: 565-557. Honda G., Masaki C., Zushi M., Tsuruta K., Sata M. (1995) The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J. Biol. Chem. 118(5): 1030-6. Ikeda T., Ishii H., Higuchi T. (2000) Localization of thrombomodulin in the anterior segment of thehuman eye. Invest Ophthalmol Vis Sci. 41:3383-90. Jackman R. W., Beeler D. L., Fritize L. (1987) Human thrombomodulin gene is intron depleted: Nucleic acid sequences of the cDNA and gene predict protein structure and suggest sites of regulatory control. Proc. Natl. Acad. Sci. U S A. 84: 6425-6429. Kane. J. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6:494-500 Karpova T. S., Baumann C . T., He L., WU X., Grammer A., Lipsky P., Hager G. L. & Mcnally J. G. (2002) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. Journal of Microscopy, 209: 56–70 Konarve P. V., Petoukhov M. V., Volkov V. V. and Svergun D. I. (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J.Appl.Cryst. 39:277-286. Koyama T., Parkinson J. F., Aoki N, Bang N. U., Muller-Berghaus G, Preissner K. T. (1991) Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br. J. Haematol 78(4): 515-22. Lager D. J., Callaghan E.J., Worth S. F., Raife T. J., Lentz S. R. (1995) Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am. J. Pathol. 146: 933-943. Llera A. S., Viedma F., Sánchez-Madrid F., and Tormo J. (2002) Crystal Structure of the C-type Lectin-like Domain from the Human Hematopoietic Cell Receptor CD69. J. Biol. Chem., 276: 7312-7319. Marasco E. K., Kimleng V., and Claudia S. D. (2006) Identification of Carotenoid Cleavage Dioxygenases from Nostoc sp. PCC 7120 with Different Cleavage Activities. J. Biol. Chem., 281: 31583-31593. Maruno M., Yoshimine T., Isaka T. (1994) Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J Neurooncol.19:155-160. McCachren S. S., Diggs J., Weinberg J. B., Dittman W. A. (1991) Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood. 78:3128-3132. Miroux B., Walker J. E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol. 260: 289-298 Mues G. I., Munn T. Z. & Raese J. D. (1986) A human gene family with sequence homology to Drosophila melanogaster Hsp70 heat shock genes. J. Biol. Chem. 261: 874-877. Nagala. S., Mantei M. & Weissman C. (1980) The structure of one of the eight or more distinct chromosomal genes for human interferon. Nature 287: 401-408. Pablo F. P., Yoriko I., Huber R. (2000) Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature. 404: 518-525. Parkinson, J. F., Garcia JG, Bang NU. (1990) Decreased thrombin affinity of cell- surface thrombomodulin following treatment of cultured endothelial cells with beta- D-xyloside. Biochem Biophys Res Commun. 169(1):177-83. Pollok, B. A., and Heim R. (1999). Using GFP in FRET-based applications. Trends Cell Biol. 9:57-60. Priddy T. S., Macdonald B. A., Heller W.T., Nadeau O. W., Trewhella J., and Carlson G. M. (2004) Ca2+-induced structural changes in phosphorylase kinase detected by small-angle X-ray scattering. Protein Science (2005), 14:1039–1048. Raife T. J., Lager D. J., Madison K. C. (1994) Thrombomodulin expression by human keratinocytes. J.Clin. Invest. 93: 1846-1851. Rebecca P. and Raymond C. S. (2004) Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods. 34: 373–389 Selvin P. R. (2000) The renaissance of fluorescence resonance energy transfer. Nature structural biology . 7:109-115 . Shaner N. C., Steinbach P. A. & Tsien R. Y. (2005) A guide to choosing fluorescent proteins. NATURE METHODS 12:102 Schenk-Braat E. A., Morser J, Rijken DC. (2001) Identification of the epidermal growth factor-like domains of thrombomodulin essential for the accelerationof thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur. J. Biochem.268:5562–5569. Smyth D. R., Mrozkiewicz M. K., McGrath W. J., Listwan P, Kobe B. (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 12(7):1313-22. Stearns-Kurosawa D. J., Kurosawa S., Mollica J. S., Ferrell G. L., Esmon CT. ( 1996) The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc. Natl. Acad. Sci. U S A ;93:10212–10216. Studier F. W., Moffatt BA. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 189(1):113-30. Tezuka Y., Yonezawa S., Maruyama I., Matsushita Y., Shimizu T., Obama H., Sagara M., Shirao K., Kusano C., Natsugoe S. (1995) Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196-4200. Verveer P. J., Rocks O., Harpur A. G., and Philippe I.H. Bastiaens. (2006) Imaging Protein Interactions by FRET Microscopy: FRET Measurements by Sensitized Emission. Cold Spring Harb Protoc. 10:1101. Wouters M. A., Rigoutsos I., Carmen K. (2005) Evolution of distinct EGF domain with specific functions. Protein Sci. 14: 1091-1103 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42583 | - |
| dc.description.abstract | 人類凝血酶調節素(Thrombomodulin, TM)為存在於血管內皮細胞表面之醣蛋白,其大小約為70kDa。人類凝血酶調節素參與了多種生化反應,如血液凝結、血纖維蛋白溶解、免疫反應、細胞附著及增生等。此蛋白質依其結構與功能由N端至C端可分成五個不同的區域:c-type lectin-like domain、連續六個EGF-like domains、serine/threonine-rich domain、transmembrane domain以及cytoplasmic domain。人類凝血酶調節素參與的各種生化功能和其結構有關,因此我們使用幾種不同的結構功能分析方法來探討人類凝血酶調節素的結構區域如何參與各種生化反應。藉由蛋白結晶繞射的技術,我們期待在原子層級觀察到人類凝血酶調節素如何利用不同的區域之結構,和其他分子(例如:thrombin、protein C等) 反應形成複合體來調控上述生化反應。此外,我們也透過小角度X光散射實驗得到蛋白質於溶液中的表面構形;這部份配合了螢光共振能量轉移分析 (FRET),用來探討TM之dimerization。
我們使用酵母菌表現系統來表現TM之片段 (TMD-23) ,這包含了EGF-like domain 以及 serine/threonine-rich domain。這類 TMD-23,純化後透過 SDS-PAGE發現有醣化現象,而在non-reducing gel上則可觀察到 TMD23 存在monomer 及 dimer。所以在結構分析前必須以分子篩分開不同型態的TMD23。接著將酵母菌表現的TMD-23純化濃縮後進行結晶條件的篩選,另外將TMD23濃縮到不同濃度後,進行小角度X光散射實驗 (small-angle X-ray scattering) ,並配合電腦軟體分別模擬TMD-23 monomer, dimer 及 non-glycosylated TMD23在水溶液中和鈣離子結合前後的結構變化。結果發現鈣離子會使TMD23的結構改變。由於先前分子篩數據顯示 TMD-23 於溶液中可能以dimer的狀態存在,所以我們就將 TMD-23 構築於帶有CFP及YFP的質體上,轉殖入細胞後去觀察是否有 FRET 訊號產生。初步結果顯示FRET效率不高,但無法就此斷定 TMD23 於細胞內沒有形成 dimer,可能是螢光物質的位置影響結果。 另外TMD-1,我們則採用大腸桿菌系統來表現。由於先前利用大腸桿菌表現之TMD-1容易凝集沉澱,所以我就將TMD-1構築於帶有glutathione-S-transferase的質體上,觀察接上較大的蛋白是否會使TMD1不易凝集沉澱,但結果發現只要濃度高於 5 mg 仍會有凝集沉澱的現象產生。 | zh_TW |
| dc.description.abstract | Thrombomodulin (TM) is a 70 kDa multifunctional glycoprotein expressed on the epithelial cell surface. TM has different biological functions, impacting on coagulation, fibrinolysis, inflammation, cell adhesion, and cell proliferation. This glycoprotein is structurally organized into 5 distinct domains. From the N-terminus to the C-terminus, TM has an N-terminal C-type lectin-like domain, six EGF-like repeats, and a serine/threonine-rich region, a single transmembrane segment and a short cytoplasmic tail inside the membrane. For the works described in this thesis, including protein crystallization, SAXS (small-angle X-ray scattering) and FRET analyses, TMD-23 containing the EGF-like domains and Ser/Thr-rich domain was expressed with Pichia pastoris expression system.
To understand how the distinct functions of this molecule can be achieved through each individual domains, the crystal structures of various domains in atomic resolutions should be anticipated. Meanwhile, before the successful crystallization trials are carried out, we have started to perform the SAXS experiments to deduce the structure envelope of TM in solution. From the non-reducing SDS-PAGE gel, there were two forms of TM (here, the TMD-23) -- monomer and dimer -- existed in our protein solution. Upon performance of the molecular sieving, monodispersed protein solutions were applied for SAXS analysis. According to our results, conformational changes are supposed to be induced by different concentrations of calcium in both TMD-23 monomer and dimer solutions. When compared with the unglycosylated monomer, glycosylated TMD-23 shows an additional structural region which may be comprehended as the mannose oligosaccharides on the EGF-like domain. As described above, the TMD-23 dimer has been observed on the SDS-PAGE. This may be brought from the nature of TM molecule in cells or from only the aggregation phenomenon in solution. Therefore it should be necessary to investigate the dimerization of TM in vivo. Experiments using FRET analysis through the transfection of plasmids constructed with TMD-23 containing CFP/YFP into HEK293 cells have been performed regarding this purpose. From our preliminary data, no apparent dimerization could be observed. However, we should not exclude that such results are probably due to the opposite orientation of TMD-23 dimer, with which the locations of CFP and YFP are far from each other, so that the distance required for the detection of FRET signal upon fluorescence emission might not be appropriate. The expression of TMD-1, consisting of only the C-type lectin-like domain, in E. coli results in the formation of inclusion bodies. We have constructed the plasmid containing TMD-1 and glutathione-S-transferase to improve the protein solubility through the attachment of a larger soluble part. However, the results show again the protein aggregation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:16:54Z (GMT). No. of bitstreams: 1 ntu-98-R96450007-1.pdf: 3401066 bytes, checksum: 5479ec0b1aa61f78cd8207839b82e219 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 3
Abstract 5 目 錄 7 縮寫檢索表 10 緒論 12 實驗材料 19 菌株 19 質體 19 細胞株 19 儀器 20 藥品 21 實驗方法 25 一,酵母菌表現系統 25 1 .酵母菌單一菌落之分離 25 2. PCR檢定重組基因 26 3 重組基因的定序 27 4 Pichia pastoris表現蛋白質 28 5 酵母菌表現系統蛋白質的純化 30 二, 大腸桿菌表現系統 32 1 構築表現質體 32 2 轉形反應 33 3 檢定大腸桿菌表現蛋白 34 4 利用大腸桿菌大量表現蛋白 35 5 .大腸桿菌系統表現蛋白之純化 35 三,SDS PAGE以及Western Blotting 37 四,MALDI-TOF實驗 41 五,蛋白質定量分析 41 六,蛋白質結晶測試 42 七,小角度X光散射實驗及數據分析 43 八,螢光共振能量轉移分析 43 實驗結果與討論 45 未來展望 51 參考文獻 53 實驗圖表 57 實驗圖目錄 圖 1、人類凝血酶調節素結構圖 57 圖 2、TMD-1以及TMD-23的胺基酸序列 58 圖 3、使用colony PCR檢定重組質體 59 圖 4、使用Pichia pastoris表現TMD-23 60 圖 5、測試Pichia pastoris表現TMD-23的穩定度 61 圖 6、TMD-23的膠體層析分析 62 圖 7、 Non-reducing SDS-PAGE分析酵母菌表現之TMD23 63 圖 8、TMD-23 monomer小角度X光散射強度 (I) 對散射向量 (Q) 的關係圖 64 圖 9、TMD-23 dimer小角度X光散射強度 (I) 對散射向量 (Q) 的關係圖 65 圖 10、TMD-23 Non-Glycosylation monomer 小角度X光散射強度 (I) 對散射向量 (Q) 的關係圖 66 圖 11 、The P(r) distribution and Rg of TMD23 monomer 67 圖12 、The P(r) distribution and Rg of TMD23 dimer 68 圖 13、 TMD-23 monomer在不同CaCl2濃度下的結構 70 圖 14、 TMD-23 dimer在不同CaCl2濃度下的結構 72 圖 15、 Non-glycosylated TMD-23 monomer的結構 72 圖 16、重組tmd-1質體圖譜 73 圖 17、使用E. coli表現TMD-1 74 圖 18、 E. coli 大量表現TMD-1分析 76 圖 19、蛋白濃度標準曲線圖 76 圖 20、重組tmd-23質體圖譜 77 圖 21、 HEK293細胞表現TMD-23經western-blot測定 77 圖 22、 ECFP-TMD23 轉染進入HEK293 78 圖 23、 EYFP-TMD23轉染進入HEK293 79 圖 24、 ECFP-TMD23及EYFP-TMD23轉染進入HEK293 79 圖 25、 HEK 293細胞轉染CFP與YFP二種螢光物質(negative control) 79 圖 26、 HEK 293細胞轉染ECFP-TMD23與EYFP-TMD23二種螢光物質 80 圖 27、 TMD23 monomer接上螢光物質的位置 81 實驗表目錄 表1、GNOM軟體去模擬Particle distance distribution function P(r)…………82 表2、FRET efficiency計算……………………………………………………..…..82 表3、酵母菌表現之TMD-23 monomer結晶試驗(1)(Molecular Dimension Limited Kit-Clear strategy1,2) ………………………………………………………..83 表4、酵母菌表現之TMD-23 monomer結晶試驗(2)(Cryo I sparse matrix crystallization screen)………………………………………………………...85 表5、酵母菌表現之TMD-23 monomer結晶試驗(3) (Emerald BioStructure Kit-Wizeard screenI,II)……………………………………………………...……87 表6、酵母菌表現之TMD-23 dimer結晶試驗(1)(Molecular Dimension Limited Kit-Clear strategy1,2)………………………………………………………...89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人類凝血酶 | zh_TW |
| dc.subject | 鈣離子 | zh_TW |
| dc.subject | 結晶 | zh_TW |
| dc.subject | 螢光共振能量轉移分析 | zh_TW |
| dc.subject | 小角度X光散射 | zh_TW |
| dc.subject | 調節素 | zh_TW |
| dc.subject | small angle x-ray scattering | en |
| dc.subject | FRET | en |
| dc.subject | crystal | en |
| dc.subject | calcium | en |
| dc.subject | thrombomodulin | en |
| dc.title | 人類凝血酶調節素結構分析:I.人類凝血酶調節素類外源凝集素區域的表現、純化與結晶II.人類凝血酶調節素上皮生長因子區域小角度X 光散射及螢光共振能量轉移分析 | zh_TW |
| dc.title | Primary Structural Analyses of Human Thrombomodulin:I. Expression, Purification and Crystallization of the Lectin-like Domain II.SAXS and FRET Analyses of the EGF-like Domains | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹迺立,吳華林,游偉詢,陳惠文,廖彥銓 | |
| dc.subject.keyword | 人類凝血酶,調節素,小角度X光散射,螢光共振能量轉移分析,結晶,鈣離子, | zh_TW |
| dc.subject.keyword | thrombomodulin,small angle x-ray scattering,FRET,crystal,calcium, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
