Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42581
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張鎮華(Gerard Jennhwa Chang)
dc.contributor.authorSheng-Hua Chenen
dc.contributor.author陳聖華zh_TW
dc.date.accessioned2021-06-15T01:16:51Z-
dc.date.available2009-08-03
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation[1] N. Alon, J. H. Spencer, The Probability Method, Wiley- Interscience Publication, 2000.
[2] N. Biggs, Algebraic Graph Theory, Cambridge,
England: Cambridge University Press, 1993.
[3] B. Bre sar, S. Klav zar, D. F. Rall, On the packing
chromatic number of Cartesian products, hexagonal
lattice, and trees, Discrete Appl. Math., 155 (2007),
no.17, 2303-2311.
[4] R. L. Brooks, On colouring the nodes of a network,
Proc. Cambridge Phil. Soc, 37 (1941), 63-70.
[5] G. J. Chang, G. L. Nemhauser, The k-domination and
k-stability on sun-free chordal graphs, SIAM J.
Algebraic Discrete Methods, 5 (1984), 332-345.
[6] J. E. Dunbar, D. J. Erwin, T. W. Haynes, S. M.
Hedetniemi, S. T. Hedetniemi, Broadcasts in graphs,
Discrete Appl. Math., 154 (2006), no.1, 59-75.
[7] M. Farber, Domination, independent domination and
duality in strongly chordal graphs, Discrete Appl.
Math., 7 (1984), 115-130.
[8] J. Fiala, P. A. Golovach, Complexity of the packing
coloring problem for trees, Discrete Appl. Math.,
in press.
[9] M. R. Garey, D. S. Johnson, Computers and
Intractability: A Guide to the Theory of
NPcompleteness, W. H. Freeman, New York, 1979.
[10] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M.
Harris, D.F. Rall, Broadcast chromatic numbers of
graphs, Ars Combinatoria, 86 (2008), 33-49.
[11] A. J. Ho man, A. W. J. Kolen, M. Sakarovitch.
Totally-balanced and greedy matrices,
SIAM J. Algebraic and Discrete Methods, 6 (1985),
721-730.
[12] M. Molloy, B. Reed, Graph Colouring and Probabilistic
Method, Springer, 2004.
[13] D. B.West, Introduction to Graph Theory, Prentice
Hall, 2nd Ed., 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42581-
dc.description.abstract泛寬著色問題主要來自無線網路的頻道分配、資源配置及生物多樣性模型。舉例來說,為了避免互相干擾,美國聯邦通訊委員會規定廣播電台必須相隔足夠距離才能使用相同的頻率,因為物理的限制,不同頻率需要不同的距離,政府部門必須適當配置才能使整個廣播網絡順利運作。
將此問題化約成圖論型式:對於給定的有限遞增正整數數列$(s_1,s_2,dots,s_k)$及圖$G$,若我們能夠給予圖上的每個頂點一個顏色,使得著第$i$色的兩個相異頂點距離超過$s_i$,則稱此圖可被$(s_1,s_2,dots,s_k)$著色;而對於給定的無限遞增正整數數列$S={s_n}_{n=1}^{infty}$,我們希望知道給定的圖最少要幾個顏色能夠作$(s_1,s_2,dots,s_k)$著色,此最少的數目稱為圖$G$的$S$-泛寬著色數。
在這篇論文當中,我們找出某些類別圖的最佳上、下界或著色演算法,並刻劃某些達到泛寬著色上界的圖,在演算複雜度方面我們區別某些泛寬著色問題是複雜的非確定型演算法問題(NP-complete)或是多項式時間可解的問題。
zh_TW
dc.description.abstractThe concept of the $S$-emph{packing coloring} motivates from the areas of frequency or channel assignment in wireless networks, resource placements and biological diversity. For instance, Federal Communications Commission of the United States Government has established numerous rules and regulations concerning the assignment of broadcast frequencies to radio stations.
Two radio stations assigned the same broadcast frequency must be located sufficiently far apart so that the broadcast does not interfere with the reception of the other,and because of physical limitation, different frequency require different distance.
The $S$-emph{packing coloring} problem is defined as follows: given a finite nondecreasing sequence $(s_1,s_2,dots,s_k)$ of positive integers, a graph $G=(V,E)$ is called $(s_1,s_2,dots,s_k)$-emph{packing colorable}
if there is a function $f:V
ightarrow {1,2,dots,k}$ such that $d(x,y)>s_i$ or $x=y$ when $f(x)=f(y)=i$.
For an infinite non-decreasing sequence $S={s_n}_{n=1}^{infty}$ of positive integers,the $S$-emph{chromatic number} $chi_S(G)$ of $G$ is the minimum number $k$ such that $G$ is $(s_1,s_2,dots,s_k)$-packing colorable.
In this thesis, we find some sharp bounds of $S$-chromatic numbers of some classes of graphs. We also characterize graphs which attain the bounds. From a complexity point of view, we distinguish NP-completeness or P-solvablility for some $S$-packing coloring problems.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:16:51Z (GMT). No. of bitstreams: 1
ntu-98-R95221034-1.pdf: 345429 bytes, checksum: 374000126f2892836b77db98073139a3 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contents iv
List of Figures v
List of Tables v
1 Introduction 1
2 Graph Notion and Terminology 3
3 Bounds on S-Chromatic Numbers 5
3.1Generalbounds . . . . . . . . . . . . . . . . 5
3.2 Complete multipartite graphs . . . . . . . . 6
3.3 Paths and cycles . . . . . . . . . . . . . . 7
3.4 Upper bound for (2(inf))-packing coloring . . 8
3.5 Bounds for strongly chordal graphs . . . . . 10
4 S-Packing Colorings on Trees 12
4.1 Characterization of (1; 2(k))-packing
colorability for trees . . . . . . . . . . . 12
4.2 Linear time algorithm on (1; 2(k))-packing
coloring for trees . . . . . . . . . . . . . 18
5 Complexity Aspect on S-Packing Coloring 21
6 Open Problems and Future Works 27
References 28
dc.language.isoen
dc.subject圖形演算法zh_TW
dc.subject圖著色zh_TW
dc.subject演算複雜度zh_TW
dc.subjectgraph algorithmen
dc.subjectcomplexityen
dc.subjectGraph coloringen
dc.title圖的數列泛寬著色zh_TW
dc.titleS-Packing Coloring on Graphsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉鴻國(Hong-Gwa Yeh),顏經和(Jing-Ho Yan)
dc.subject.keyword圖著色,圖形演算法,演算複雜度,zh_TW
dc.subject.keywordGraph coloring,graph algorithm,complexity,en
dc.relation.page29
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
337.33 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved