請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42580完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周仲島(Ben Jong-Dao Jou) | |
| dc.contributor.author | Tzu-Chin Chen | en |
| dc.contributor.author | 陳姿瑾 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:16:50Z | - |
| dc.date.available | 2010-07-29 | |
| dc.date.copyright | 2009-07-29 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-27 | |
| dc.identifier.citation | 毛又玉,2007:台灣北部地區層狀與對流降水的雨滴譜特性,國立中央大學碩士論文,101頁。
王寶貫,2005:雲物理學,渤海堂文化公司,382頁。 林位總,2004:利用二維雨滴譜儀研究雨滴譜特性,國立中央大學碩士論文,89頁。 吳宗堯、陳泰然、謝信良、橋鳳倫、陳正改、蕭長庚及朱曙光,1984:台灣地區 春至初夏之局部豪雨及其對水稻災害之初步分析。大氣科學,11,29-44。 陳泰然與王重傑,2002:梅雨季台灣中北部地區伴隨鋒面與中尺度低壓豪(大)雨與 定量降水之中尺度氣候研究。大氣科學,30,61-82。 陳泰然、王重傑、張智昇與王子軒,2005:梅雨季台灣中部地區降水與豪(大)雨 之中尺度氣候特徵。大氣科學,33,49-76。 陳泰然與林宗嵩,1997:梅雨季台灣中南部地區豪大雨之氣候特徵研究。大氣科學, 25,289-306。 陳泰然與紀水上,1978:台灣梅雨鋒面之中幅度結構。大氣科學,5,35-47。 陳泰然與楊進賢,1988:台灣梅雨期豪雨之時空分布特徵。大氣科學,16,151-162。 張偉裕,2002:利用雨滴譜儀分析雨滴譜 ( 納莉颱風個案 ),國立中央大學碩士論文,95頁。 童崇旗,2009:西南氣流實驗期間之降水特徵與相關環境型態,國立台灣大學碩士論文,90頁。 錢映真,2001:利用UHF雷達進行降水粒子之辨識分類及垂直速度、粒徑大小之分析研究,國立中央大學碩士論文,129頁。 簡巧凌,2006:台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性,國立中央大學碩士論文,135頁。 鍾榮興,1989:台灣西南部大雨之調查及區內可能發生最大日雨量之推算。氣象 預報與分析,118,11-18。 Brands, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution-based ploarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652-660. Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sic., 60, 354-365. Carlton W. Ulbrich, and D. Atlas, 1984: Assessment of the contribution of differential polarization to improve rainfall measurements. Radio Sci., 19, 49-57. Campos, E., and I. Zawadaki, 2000: Instrumental uncertainties in Z-R relations. J. Appl. Meteor., 39, 1088-1102. Chang, W. Y., T.-C. Chen Wang, P.-L. Lin, 2009: The characteristics of raindrop size distribution and drop shape relation in typhoon systems in the western pacific from 2D-Video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic. Technol., DOI: 10.1175/2009JTECHA1236.1 Collier, C.G., P. R. Larke and B. R. May, 1983: A weather radar correction procedure for real-time estimation of surface raindall. Quart. J. Roy. Meteor. Soc., 109, 589-608. Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243-248. Houghton, H. G., 1968: On precipitation mechanisms and their artifical modification. J. Appl. Meteor., 7, 851-859. Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press. 573pp. ─, 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196. Huggel, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35, 1688-1701. Kozu, T. and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic. Technol., 8, 259-270. Lee, C. K., G. Y. Lee, I. Zawadzki and K. E., Kim, 2009: A Preliminary Analysis of Spatial Variability of Raindrop Size Distributions during Stratiform Rain Events. J. Climate Appl. Meteor., 48, 270–283. Lee, G. Y., and I. Zawadzki, 2006: Errors in the radar calibrations by gage, distrometer, and polarimetry: Theoretical limit and application to operational radar. J. Hydrol., 328, 83-97. Marshall, J.S., and W. M. K. Palmer, 1948: The Distribution of raindrop with Size. J. Meteor., 5, 165-166. Masayuki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristice of the Raindrop Size Distribution in Tropical Continental Squall Lines Observed in Darwin, Australia. J. Appl. Meteor., 40, 1393-1412. Rogers, R. R., and M. K., Yan 1989: A Short Course in Cloud Physics.,3rd Edition Pergamon Prss. Rutledge, S. A. and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44, 2640-2656. Sauvageot, H., and J. P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52, 1070-1083. Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop size distributions in a thunderstorm. J. Atmos. Sci., 28, 983-994. Sheppard, B. E., 1990: Measurement of raindrop size distribution using a small Doppler radar. J. Atmos. Oceanic Technol., 7, 255-268 ─, and P. I. Joe, 1994: Comparison of raindrop size distribution measurement by Joss-Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874-887. Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Tellus , 10, 256-271. Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characteristion of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 35, 355-371. Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 35, 335-371. Testud, A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers.J. Appl. Meteor., 40, 2083-2097 Tokay, A., and D. A.Short, 1996: Evidence from Tropical Raindrop Spectra of the Origin of Rain form Stratiform versus Convection Cloud. J. Appl. Meteor., 35, 335-371. Ulbrich, C. W, 1983: Natural variations in the analytical from of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764-1775. ─, and D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci., 19, 49-57. Waldvogel, A., 1974: The jump of raindrop spectra. J. Atmos. Sci., 31, 1068-1078 Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 1648-1661. Yan, J.-Y., 1997: Observational study on the onset of the South China Sea southwest monsoon. Adv. Atmos. Sci., 14, 276-287 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42580 | - |
| dc.description.abstract | 利用雨量筒測量或者是雷達所計算之相同降雨強度,其雨滴譜可以有很大的不同,因此透過本研究在西南氣流實驗期間微觀特性之瞭解,試圖推導出巨觀之特性。造成層狀與對流降水原因與垂直上的熱力、動力結構皆有不同,故其雨滴粒徑特徵都有顯著的不同,因此探討層狀與對流降水型態下的雨滴譜不僅能對降水特性有更多的瞭解,還可以更進一步知道微物理過程以微觀歸納巨觀,以巨觀演繹微觀。
北部觀測實驗結果顯示,撞擊式雨滴譜儀的雨滴譜呈現Gamma分布,隨著回波的增加小雨滴數量會有明顯之低估;降雨感應系統則是M-P分布,隨著回波的增加雨滴譜從M-P轉變成Gamma分布。另外撞擊式雨滴譜儀在0.6mm到3.0mm觀測到的雨滴數量比降雨感應系統的雨滴數量多,故前者所計算出來的降雨強度以及回波強度都比降雨感應系統為高。 南部觀測實驗則是利用屏東機場探空區分四個不同大氣環境場,並且用Bringi et al. (2003)區分出對流與層狀降水,結果顯示出層狀降水的雨滴譜與亮帶有很大的關係,有觀測到亮帶之階段,平均之平均粒徑(Dm)會比其他階段還要大。對流降水與層狀降水前者在雨滴大小較後者大,也較後者為多。 若與Bringi et al. (2003)統計資料做比較,發現北部與南部的層狀降水與國外的層狀降水分類一致,截距參數(Nw)與中值體積直徑(Do)分布近似線性,且斜率是負值;對流降水在北部的觀測結果趨近於海洋性降水,而南部的對流降水則是介於海洋性與大陸性對流之間。另外分析發現,平均中值體積直徑(Do)大的階段,會觀測到較多的中型雨滴,也就是說中型雨滴可能在降雨積分參數中扮演重要角色。 | zh_TW |
| dc.description.abstract | The rain gauges or radar estimate the same rainfall intensity, raindrop size distribution (DSD) may have very big difference. The present study is trying to understand characteristic of microscopic, and attempt characteristic of macroscopic. The formation mechanism and vertical thermal and dynamic structure of stratiform and convective precipitation are different, therefore the characteristic of DSD will have remarkable difference. The stratiform and convective of DSD not can only understand characteristic of precipitation but also the microphysical processes.
The northern observation experimental result showed that DSD of Joss-Waldvogel Distrometer (JWD) is near Gamma distribution. The small drops underestimate when the reflectivity increased. The shape of DSD of Precipitation Occurrence Sensor system (POSS) is near exponential distribution. The M-P pattern changed into the Gamma pattern when the reflectivity increased. The number of DSD of JWD between 0.6mm and 3.0mm is more than POSS, therefore the former rainfall intensity and reflectivity are higher than latter. It separated four regimes from Pingtung sounding during the south observation experiment, and discriminated between stratiform and convective types on Bringi el al.(2003). The study showed the result of relation to the DSD of stratiform and bring band. The convective of DSD have big raindrops and quantity of raindrops are large. The stratiform of DSD is a straight line with negative slope during all the experiment. The north of convective precipitation of DSD is near maritime-like type, but the south of convective type of DSD is between maritime and continental cluster. Otherwise, it’s could important the middle size raindrops in the integral rainfall parameters. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:16:50Z (GMT). No. of bitstreams: 1 ntu-98-R95229015-1.pdf: 12980842 bytes, checksum: 8fcef2c977a3e1e00ed3a6cf3e178cc1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員鑑定書…………………………………………………………I
致謝………………………………………………………………………II 摘要……………………………………………………………………III Abstract…………………………………………………………………IV 目錄………………………………………………………………………VI 圖表說明………………………………………………………………VIII 第一章:前言…………………………………………………………………………1 1-1:論文回顧…………………………………………………………1 1-2:西南氣流實驗簡介………………………………………………3 1-3:研究動機與目的…………………………………………………5 第二章:資料來源與分析方法…………………………………………8 2-1:資料來源…………………………………………………………8 2-2:儀器介紹…………………………………………………………8 2-2-1 降雨感應系統……………………………………………8 2-2-2 撞擊式雨滴譜儀…………………………………………9 2-2-3 S波段雙偏振雷達………………………………………10 2-3:分析方法………………………………………………………11 2-3-1 雨滴譜計算……………………………………………12 2-3-2 層狀與對流降雨型態之區分方法……………………15 第三章:北部降雨觀測雨滴譜特徵……………………………………17 3-1:北部降雨觀測實驗設計………………………………………17 3-2:北部觀測實驗環境場之特徵…………………………………18 3-3:北部觀測實驗雨滴譜之特徵…………………………………18 第四章:南部降雨觀測雨滴譜特徵……………………………………22 4-1:實驗期間不同階段之環境場特徵……………………………22 4-2:超級站撞擊式雨滴譜儀與降雨感應系統儀器資料比對……23 4-3:超級站層狀與對流降雨型態的雨滴譜………………………23 4-4:不同階段層狀與對流降雨型態的雨滴譜……………………25 第五章:結論與建議……………………………………………………27 5-1:結論……………………………………………………………27 5-2:建議……………………………………………………………28 5-2-1 降雨感應系統與撞擊式雨滴譜儀資料品管…………28 5-2-2 未來展望………………………………………………29 參考文獻………………………………………………………………30 附表………………………………………………………………………34 附圖………………………………………………………………………40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雨滴譜 | zh_TW |
| dc.subject | 降雨積分參數 | zh_TW |
| dc.subject | 平均粒徑 | zh_TW |
| dc.subject | 中值體積直徑 | zh_TW |
| dc.subject | Gamma分布 | zh_TW |
| dc.subject | M-P分布 | zh_TW |
| dc.subject | 對流降水 | zh_TW |
| dc.subject | 層狀降水 | zh_TW |
| dc.subject | 降雨感應系統 | zh_TW |
| dc.subject | 撞擊式雨滴譜 | zh_TW |
| dc.subject | Joss-Waldvogel Distrometer(JWD) | en |
| dc.subject | Raindrop Size Distribution | en |
| dc.subject | Precipitation Occurrence Sensor System(POSS) | en |
| dc.subject | Staratiform Precipitation | en |
| dc.subject | Convective | en |
| dc.subject | Precipitation | en |
| dc.subject | M-P distribution | en |
| dc.subject | Gamma Distribution | en |
| dc.subject | Median Volume Diamter | en |
| dc.subject | Mass-Weighted Average Diameter | en |
| dc.subject | Integral Rainfall Parameters | en |
| dc.title | 西南氣流實驗之雨滴譜分析研究 | zh_TW |
| dc.title | Characteristics of Raindrop Size Distribution during SoWMEX/TiMREX | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳泰然(Tai-Jen Chen),林博雄(Po-Hsiung Lin),簡芳菁(Fang-Ching Chien),林松錦(Song-Chin Lin) | |
| dc.subject.keyword | 雨滴譜,撞擊式雨滴譜,降雨感應系統,層狀降水,對流降水,M-P分布,Gamma分布,中值體積直徑,平均粒徑,降雨積分參數, | zh_TW |
| dc.subject.keyword | Raindrop Size Distribution,Joss-Waldvogel Distrometer(JWD),Precipitation Occurrence Sensor System(POSS),Staratiform Precipitation,Convective,Precipitation,M-P distribution,Gamma Distribution,Median Volume Diamter,Mass-Weighted Average Diameter,Integral Rainfall Parameters, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 12.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
