Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42544
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳
dc.contributor.authorYi-Jen Wuen
dc.contributor.author吳彝任zh_TW
dc.date.accessioned2021-06-15T01:15:53Z-
dc.date.available2010-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation[1] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos*, “Hybrid Nanorod-Polymer Solar Cells,” 2002, Science, 295, 2425 – 2427
[2] M. Al-Ibrahim*, O, Ambacher, S. Sensfuss, G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene):Fullerene,” 2005, Appl. Phys. Lett., 86, 201120
[3] P. W. M. Blom*, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells,” 2007, Adv. Mater., 19, 1551–1566
[4] G. Dennler, M. C. Scharber, C. J. Brabec*, “Polymer-Fullerene Bulk-Heterojunction Solar Cells,” 2009, Adv. Mater., 21, 1323–1338
[5] Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, and C.-W. Chen*, “Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells,” 2009, J. Am. Chem. Soc., 131, 3644–3649
[6] C. R. McNeill, H. Frohne, J. L. Holdsworth, J. E. Furst, B. V. King, and P. C. Dastoor*, “Direct Photocurrent Mapping of Organic Solar Cells Using a Near-Field Scanning Optical Microscope,” 2004, Nano Lett., 4, 219-223
[7] G.. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger*, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” 1995, Science, 270, 1789-1791.
[8] J. S. Moon, J. K. Lee, S. Cho, J. Byun, and A. J. Heeger*, ““Columnlike” Structure of the Cross-Sectional Morphology of Bulk Heterojunction Materials,” 2005, Nano Lett., 9, 230-234
[9] W. Ma, J. Y. Kim, K. Lee, A. J. Heeger*, “Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells,” 2007, Macromol. Rapid Commun., 28, 1776–1780

[10] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger*, G. C. Bazan*, “Efficiency Enhancement in Low-bandgap Polymer Solar Cell by Processing with alkane ditiols,” 2007, Nature Mater., 6, 497-500

[11] S.-H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.-S. Moon, D. Moses, M. Leclerc, K. Lee*, A. J. Heeger*, ”Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” 2009, Nature Photonics, 3, 297 – 302
[12] J. Peet, M. L. Senatore, A. J. Heeger,* and G. C. Bazan*, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” 2009, Adv. Mater., 21, 1521–1527
[13] H. Hoppe*, T. Glatzel, M. Niggemann, A. Hinsch, M. Ch. Lux-Steiner, and N. S. Sariciftci, “Kelvin Probe Force Microscopy Study on Conjugated polymer/Fullerene Bulk Heterojunction Organic Solar Cells,” 2005 Nano Lett., 5, 269-274
[14] K. Maturová, M. Kemerink*, M. M. Wienk, D. S. H. Charrier, and R. A. J. Janssen, “Scanning Kelvin Probe Microscopy on Bulk Heterojunction Polymer Blends,” 2009, Adv. Funct. Mater., 19, 1–8
[15] B. J. Leever*, M. F. Durstock, M. D. Irwin, A. W. Hains, T. J. Marks, L. S. C. Pingree and M. C. Hersam, “Spatially resolved photocurrent mapping of operating organic photovoltaic devices using atomic force photovoltaic microscopy,” 2008, Appl. Phys. Lett., 92, 013302
[16] X. Yang, J. Loos*, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, “Nanoscale Morphology of High-Performance Polymer Solar Cell,” 2005, Nano Lett., 5 , 579-583
[17] R. J. Kline, M. D. McGehee*, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, “Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight,” 2003, Adv. Mater., 15(18), 1519-1522
[18] Y. Liu, M. A. Summers, C. Edder C,J. M. J. Fréchet, M. D. McGehee*, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” 2005, Adv. Mater., 17, 2960
[19] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley*, J. Nelson*, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” 2008, Nature Mater., 7, 158-164
[20] M. Dante, J. Peet, T.-Q. Nguyen*, “Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy,” 2008, J. Phys. Chem. C, 112, 7241-7249
[21] R. Zhu, C.-Y. Jiang, B. Liu*, and S. Ramakrishna*, “Highly Efficient Nanoprous TiO2-polythiophene Hybrid Solar Cell Based on Interfacial Modification Using a Metal-Free Organic Dye,” 2008, Adv. Mater., 20, 1-7
[22] V. Palermo, S. Morelli, M. Palma, C. Simpson, F. Nolde, A. Herrmann, K. Müllen, and P. Samorì*, “Nanoscale Structural and Electronic Properties of Ultrathin Blends of Two Polyaromatic Molecules: A Kelvin Probe Force Microscopy Investigation,” 2006, Chem. Phys. Chem., 7, 847–853
[23] A. Liscio, V. Palermo, D. Gentilini, F. Nolde, K. Müllen, and P. Samorì*, “Quantitative Measurement of the Local Surface Potential of π-Conjugated Nanostructures: A Kelvin Probe Force Microscopy Study,” 2006, Adv. Funct. Mater., 16, 1407–1416
[24] V. Palermo, M. Palma, P. Samorì*, “Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy,” 2006, Adv. Mater., 18, 145–164
[25] V. Palermo, G. Ridolfi, A. M. Talarico, L. Favaretto, G. Barbarella, N. Camaioni, and P. Samorì*, “A Kelvin Probe Force Microscopy Study of the Photogeneration of Surface Charges in All-Thiophene Photovoltaic Blends,” 2007, Adv. Funct. Mater., 17, 472–478
[26] A. Liscio, V. Palermo*, and P. Samorì*, “Probing Local Surface Potential of Quasi-One-Dimensional Systems: A KPFM Study of P3HT Nanofibers,” 2008, Adv. Funct. Mater., 18, 907–914
[27] A. Liscio, G. D. Luca, F. Nolde, V. Palermo *, K. Müllen *, and P. Samorì*, “Photovoltaic Charge Generation Visualized at the Nanoscale: A Proof of Principle,” 2008, J. AM. CHEM. SOC., 130, 780-781
[28] A. Liscio, V. Palermo*, K. Müllen, and P. Samorì*, “Tip-Sample Interactions in Kelvin Probe Force Microscopy: Quantitative Measurement of the Local Surface Potential,” 2008, J. Phys. Chem. C, 112, 17368–17377
[29] V. Palermo, M. B. J. Otten, A. Liscio, E. Schwartz, P. A. J. de Witte, M. A. Castriciano, M. M. Wienk, F. Nolde, G. De Luca, J. J. L. M. Cornelissen, R. A. J. Janssen, K. Müllen, A. E. Rowan,* R. J. M. Nolte, and P. Samorì*, “The Relationship between Nanoscale Architecture and Function in Photovoltaic Multichromophoric Arrays as Visualized by Kelvin Probe Force Microscopy,” 2008, J. AM. CHEM. SOC., 130, 14605–14614
[30] M. Chiesa, L. Bürgi, J.-S. Kim, R. Shikler, R. H. Friend, and H. Sirringhaus*, “Correlation between Surface Photovoltage and Blend Morphology in Polyfluorene-Based Photodiodes,” 2005 Nano Lett., 5, 559-563
[31] T.-W. Zeng, Y.-Y. Lin, C.-W. Chen, W.-F. Su*, C.-H. Chen, S.-C. Liou, H.-Y. Huang, “A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices,” 2006, Nanotechnology, 17, 5387–5392
[32] H.-H. Lo, W.-F. Su*, C.-W. Chen, “Study on Photocurrent Properties of Organic Hybrid Solar Cell Based on Poly(3-hexylthiophene) and TiO2 nanorods,” 2007, NTU Libarary, Gen. Lib. B1 Theses, (T) 337.421 6047
[33] M.-C. Wu, C.-H. Chang, H.-H. Lo, Y-S. Lin, Y.-Y. Lin, W.-C. Yen,W.-F. Su,* Y.-F. Chen, and C.-W. Chen*, “Nanoscale Morphology and Performance of Molecular-Weight-Dependent Poly(3-hexylthiophene)/TiO2 Nanorod Hybrid Solar Cells,” 2008, J. Mater. Chem., 18, 4097–4102
[34] R. H. Lohwasser, J. Bandara and M. Thelakkat*, “Tailor-made synthesis of poly(3-hexylthiophene) with carboxylic end groups and its application as a polymer sensitizer in solid-state dye-sensitized solar cell,” 2009, J. Mater. Chem., 19, 4126–4130
[35] P. D. Cozzoli, A. Kornowski, H. Weller*, “Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods,” 2003, J. Am. Chem. Soc., 125, 14539-14548.

[36] L.-M. Chen, Z. Hong, G. Li, and Y. Yang*, “Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells,” 2009, Adv. Mater., 21, 1–16
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42544-
dc.description.abstract掃描力探針顯微鏡以其奈米碳針可以對材料表面的微結構進行觀察,迄今在奈米尺度的研究上貢獻良多。其中,克爾文探針顯微鏡利用導電探針與試片的靜電反應可以直接觀察試片表面電荷的行為,可以量測光電元件的運作情形;又由於克爾文探針顯微鏡是在非接觸與非破壞的方式下運作,該顯微鏡適用於軟性材料與有機材料。本篇研究主要是以克爾文探針顯微鏡探討聚三己基噻吩與二氧化鈦奈米桿混摻材料層在沒照光與照光的情況下電荷的運作情形,並藉此觀點探討元件的最佳製程參數;而我們將高分子量的聚三己基噻吩(66k Da)溶於氯苯後與以寡聚體三己基噻吩為表面改質過後的二氧化鈦奈米桿進行混摻並旋鍍成混摻薄膜,由克爾文探針顯微鏡觀察到該薄膜在照光後其表面的電子密度有顯著的提升,該製程參數製成的太陽能電池也有最高的效率表現。至此,本研究發現表面電荷與太陽能電池的效率表現有明顯的關聯性,而藉由克爾文探針顯微鏡量測混摻薄膜而得的表面電荷可以定性地表現出太陽能電池的效率表現。此量測方式提供了一種快速了解有機太陽能電池製程品質的分析方法,可以大幅的縮減一般有機太陽能電池分析與製程的週期。zh_TW
dc.description.abstractAs a nanoscale microscope, the scanning force microscope is crucial to make an insight into the performance of material in the operation of optoelectronic devices. Kelvin probe force microscope, one of SFMs, can directly monitor the behavior of the surface charge by the electrostatic force between the conductive tip and the sample. Its non-contact and non-destructive characteristics allow applications on soft and organic materials. In this study, we monitor series of surface charge by KFM on poly(3-hexylthiophene)(P3HT) and TiO2 nanorod hybrid active layers for solar cells in dark or under illumination, which enabled us find an optimal processing condition for the device. Under the illumination, the hybrid film made from high molecular weight P3HT (66 kDa) and oligomer 3HT-COOH modified TiO2 nanorods shows the largest electron accumulation on the surface and exhibit the best solar cell efficiency. The KFM measurements also provide the knowledge in the relationships between surface potential and device performance for P3HT:TiO2 hybrid solar cell. These results can understand the device performance qualitatively by single KFM measurement on the active layer, without fabricating a complete device. It is a valuable technique to shorten the development and hybrid solar cells.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:15:53Z (GMT). No. of bitstreams: 1
ntu-98-R96527013-1.pdf: 9094002 bytes, checksum: 5881a214f89ed846afced284d608c1ac (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introductions ............................................................................................ 13
Chapter 2 Background and Literature Review ...................................................... 18
2.1 Mechanism of Photocurrent Generation ............................................................... 18
2.1.1 Photon absorption and exciton generation ................................................... 18
2.1.2 Exciton diffusion and dissociation ................................................................. 18
2.1.3 Charge transport and collection at the respective electrode ......................... 19
2.2 Kelvin Probe Force Microscope ........................................................................... 20
2.2.1 KFM measurement ......................................................................................... 20
2.2.2 KFM on bulk heterojunction solar cell .......................................................... 23
Chapter 3 Experimental ............................................................................................ 29
3.1 List of Chemicals .................................................................................................. 29
3.2 List of Instruments ................................................................................................ 30
3.3 P3HT/TiO2 Hybrid Material ................................................................................. 31
3.3.1 Electron Donor - P3HT ................................................................................. 31
3.3.2 Electron Acceptor – TiO2 nanorod................................................................. 32
3.3.3 Fabrication of P3HT:TiO2 Hybrid Film ........................................................ 33
3.4 KFM Sample Preparation ..................................................................................... 36
3.5 TEM Sample Preparation ..................................................................................... 36
Chapter 4 Results and Discussions .......................................................................... 37
4.1 KFM Measurements on Pristine Materials ..................................................... 37
4.1.1 Surface Potential on Pristine P3HT film ....................................................... 37
4.1.2 Surface Potential on TiO2 nanorod film ........................................................ 39
4.2 Effect of Device Structure on Surface Charge of P3HT:TiO2 Hybrid Film ......... 41
4.3 Effect of Processing Conditions on Surface Charge of P3HT:TiO2 Hybrid Film 47
4.3.1 Effect of P3HT Molecular Weight on the Surface Charge of P3HT: TiO2
Hybrid Film ............................................................................................................ 47
4.3.2 Effect of Solvent for P3HT on the Surface Charge of P3HT: TiO2 Hybrid Film
............................................................................................................................... 54
4.3.3 Effect of TiO2 surface modifier on the Surface Charge of P3HT: TiO2 Hybrid
Film ......................................................................................................................... 63
Chapter 5 Conclusions ................................................................................................. 69
Chapter 6 Recommendations ...................................................................................... 73
Chapter 7 References ................................................................................................... 75
dc.language.isoen
dc.title以克爾文探針顯微鏡研究奈米尺度下聚三己基噻吩與二氧化鈦奈米桿混摻材料之表面形貌與表面電位zh_TW
dc.titleStudy of Nanoscale Morphology and Surface Potential of P3HT/TiO2 Nanorod Hybrid Material using Kelvin Probe Force Microscopyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹正熙,莊智閔,林清富
dc.subject.keyword克爾文探針顯微鏡,表面電荷,聚三己基噻,吩與二氧化鈦奈米桿混摻材料,有機無機混摻太陽能電池,zh_TW
dc.subject.keywordKelvin probe force,surface potential,P3HT,TiO2,hybrid solar cell,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
8.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved