請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42543完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江衍偉(Yean-Woei Kiang) | |
| dc.contributor.author | Chia-Perng Fang | en |
| dc.contributor.author | 方嘉鵬 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:15:52Z | - |
| dc.date.available | 2009-07-30 | |
| dc.date.copyright | 2009-07-30 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | 1. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light into solar cells,” Nano Letters, vol. 8, No. 12, pp. 4391-4397, 2008.
2. N. C. Panoiu, R. M. Osgood, “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Optics Letters, vol. 32, No. 19, pp. 2825-2827, 2007. 3. J. K. Mapel, M. Singh, M. A. Baldo, K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett., vol. 90, p. 121102, 2007. 4. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett., vol. 93, p. 121904, 2008. 5. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys., vol. 101, p. 093105, 2007. 6. K. Tvingstedt, N. K. Persson, and O. Inganäs, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett., vol. 91, p. 113514, 2007. 7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, New York: Wiley-Interscience, 1983. 8. T. Kume, S. Hayashi, H. Ohkuma, K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: White light excitation of surface plasmon polaritons,” J. Appl. Phys., vol. 34, pp. 6448-6451, 1995. 9. T. Kume, S. Hayashi and K. Yamamoto, “Enhancement of Photoelectric Conversion Efficiency in Copper Phthalocyanine Solar Cell by Surface Plasmon Excitation,” J. Appl. Phys., vol. 32, pp. 3486-3492, 1993. 10. S. Hayashi, K. Kozaru and K. Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: A test with an organic solar cell,” Solid State Communications, vol. 79, issue 9, pp. 763-767, 1991. 11. Y. A. Akimov, K. Ostrikov, E. P. Li, Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells, New York: Springer, 2006. 12. T. H. Reilly, J. Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett., vol. 92, p. 243304, 2008. 13. T. Wakamatsu, K. Saito, Y. Sakakibara, and H. Yokoyama, “Enhanced photocurrent in organic photoelectric cells based on surface-plasmon excitations,” Japanese Journal of Applied Physics, vol. 34, pp. 1467-1469, 1995. 14. K. Ishikawa, C. J. Wen, and K. Yamada, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” Journal of Chemical Engineering of Japan, vol. 37, pp. 645- 649, 2004. 15. K. Yamagishi, “Surface plasmon resonance in organic photovoltaic cells with silver or gold electrodes,” Molecular Crystals and Liquid Crystals, vol. 462, pp. 83-90, 2007. 16. K. Saito, “Quenching of excited J aggregates on metals by surface plasmon excitations,” Journal of Physical Chemistry B, vol. 103, pp. 6579-6583, 1999. 17. S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett., vol. 93, p. 193103, 2008. 18. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge: Cambridge University Press, 1999. 19. Y. K. Kuo, H. Y. Chu, S. H. Yen, B. T. Liou, M. L. Chen, “Bowing parameter of zincblende InxGa1-xN,” Optics Communications, vol. 280, pp. 153-156, 2007. 20. H. Hamzaoui, A. S. Bouazzi, B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Solar Energy Materials & Solar Cells, vol. 87, pp. 595-603, 2005. 21. E. D. Palik, Handbook of Optical Constants of Solids, Washington D. C.: Academic Press, 1985. 22. C. A. Gueymard, W. C. duPont, “Spectral effects on the transmittance, solar heat gain, and performance rating of glazing systems,” Solar Energy, vol. 83, pp. 940-953, 2009. 23. S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007. 24. W. H. Chuang, “Studies on the Fundamental Properties and Applications of Surface Plasmon Coupling with a Dipole in a Metal Surface Nano-Grating Structure,” Master Thesis, National Taiwan University, 2008. 25. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photonics, vol. 2, pp. 496-500, 2008. 26. J. Furlan, F. Smole, P. Popovic, M. Topic, and M. Kamin, “Charge carrier transport in n-i-p and p-i-n a-Si/c-Si heterojunction solar cells,” Solar Energy Materials & Solar Cells, vol. 53, pp. 15-21, 1998. 27. C. M. Martin, V. M. Burlakov, H. E. Assender, “Modeling charge transport in composite solar cells,” Solar Energy Materials & Solar Cells, vol. 90, pp. 900-915, 2006. 28. A. M. Meftah, A. F. Meftah, F. Hiouani and A. Merazga, “Numerical simulation of the defect density influence on the steady state response of a silicon-based p-i-n cell,” J. Phys.: Condens. Matter, vol. 16, pp. 2003-2016, 2004. 29. A. Fantoniy, M. Vieiray, J. Cruzy, R. Schwarzz and R. Martins, “A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell,” J. Phys. D: Appl. Phys., vol. 29, pp. 3154-3159, 1996. 30. K. Kotsovosa, V. Perraki, “Structure optimization according to a 3D model applied on epitaxial Si solar cells: A comparative study,” Solar Energy Materials & Solar Cells, vol. 89, pp. 113-127, 2005. 31. S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York: Springer, 1984. 32. K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence,” Appl. Phys., vol. 86, p. 052105, 2005. 33. X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou and J. Li, “Simulation of In0.65Ga0.35N single-junction solar cell,” J. Phys. D: Appl. Phys., vol. 40, pp. 7335-7338, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42543 | - |
| dc.description.abstract | 本論文中,我們利用名為COMSOL的模擬工具來計算有金屬奈米結構之太陽電池的光吸收和載子傳輸問題。此太陽電池包含了p型氮化鎵層、n型氮化鎵層和中間的i型氮化銦鎵吸收層。這裡所用的光源是AM1.5G的太陽光譜。我們利用金屬奈米結構去激發表面電漿子進而增加太陽電池的光吸收。由於表面電漿子的共振頻率取決於金屬與介質交界面的幾何形狀,故控制增加光吸收的頻段應是可行的。為了進一步了解表面電漿子和繞射如何影響太陽電池的光吸收,我們改變奈米金屬結構的形狀與排列週期,並藉數值模擬,比較有奈米金屬結構與無奈米金屬結構的情形下的太陽電池光吸收的程度。最後,我們模擬太陽電池的光電流與效率在表面電漿子與繞射的影響下所產生的增益。 | zh_TW |
| dc.description.abstract | In this thesis, we use the simulation tool COMSOL to calculate the light absorption and carrier transport of the solar cells with metallic nanostructures. The solar cell structure consists of a p-GaN layer, a n-GaN layer, and in between a i-InGaN absorption layer. The light source adopted is the AM1.5G solar spectrum. We use the metallic nanostructures for exciting surface plasmons to enhance the light absorption of solar cells. Because the resonance frequencies of surface plasmons depend on the geometry of the metal-dielectric interface, it is feasible to control the enhancement of light absorption at a desired wavelength. To further understand the influences of surface plasmon and diffraction on the light absorption of solar cells, we change the shape and period of metallic nanostructures to see the effect. Through numerical simulation, we compare the light absorption for the solar cell with metallic nanostructures to that for the solar cell without nanostructures. Finally, we numerically investigate the enhancement of photocurrent and efficiency for the solar cells with the aid of the surface plasmons and diffraction effects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:15:52Z (GMT). No. of bitstreams: 1 ntu-98-R96941019-1.pdf: 3080513 bytes, checksum: e294627a68f42f69a9d703962abeae72 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Light absorption 4 2.1 Absorption coefficient 4 2.1.1 Definition of absorption coefficient 4 2.1.2 Absorption in InGaN 5 2.2 Definition of absorbed power 5 Chapter 3 Absorption enhancement by surface plasmons and other mechanisms 10 3.1 Surface plasmon (SP) 10 3.1.1 Background knowledge 10 3.1.2 Surface plasmon polariton (SPP) 12 3.1.3 Localized surface plasmon (LSP) 14 3.2 Simulation on absorption enhancement 16 3.2.1 Two-dimensional simulation on structures with embedded nanorods 16 3.2.2 Two-dimensional simulation on grating structures 24 Chapter 4 Carrier transport 58 4.1 Mathematical model 58 4.2 Parameters in p-i-n solar cell 63 Chapter 5 Numerical results for carrier transport 66 5.1 Two-dimensional simulation on structures with embedded nanorods 66 5.2 Two-dimensional simulation on grating structures 68 Chapter 6 Conclusions 72 References 74 | |
| dc.language.iso | en | |
| dc.subject | 太陽電池 | zh_TW |
| dc.subject | 模擬 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | Solar cell | en |
| dc.subject | simulation | en |
| dc.subject | nanostructure | en |
| dc.title | 具金屬奈米結構的太陽電池的模擬研究 | zh_TW |
| dc.title | Numerical Simulation on Solar Cells with Metallic Nanostructures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠(Chih-Chung Yang),張宏鈞(Hung-Chun Chang),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 太陽電池,奈米結構,模擬, | zh_TW |
| dc.subject.keyword | Solar cell,nanostructure,simulation, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
