Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42537
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立昇
dc.contributor.authorYu-Hsien Linen
dc.contributor.author林育賢zh_TW
dc.date.accessioned2021-06-15T01:15:44Z-
dc.date.available2009-08-03
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation[1] S. L. Veherencamp, “Individual, kin, and group selection,” in Handbook of Behavioural Neurobiology, Vol. 3, Social Behavior and Communication, 1987.
[2] J. M. Cullen, E. Shaw & H. A. Baldwin, “Methods for Measuring the Three-Dimensional Structure of Fish Schools,” Animal Behavior, Vol. 13, pp. 534-543, 1965.
[3] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Millter & S. J. Simpson,“From Disorder to Order in Marching Locusts,” Science, Vol. 312, pp. 1401-1406, 2006.
[4] T. Balch & R. Arkin, “Behavior-based Formation Control for Multi-robot Teams,” IEEE Trans. Robotics and Automation, Vol. 14, pp. 926-939, Dec. 1999.
[5] M. Allen, J. Ryan, C. Hanson & J. Parle, “String Stability of a Linear Formation Flight Control System,” NASA, Technical Memorandum NASA-TM-2002-210733, Aug. 2002.
[6] M. B. Milam, N. Petit & R. Murray, “Constrained Trajectory Generation for Micro-satellite formation Flying,” in AIAA Guid., Nav., & Contr., Conf., 2001.
[7] I. Ihle, J. Jouffroy & T. I. Fossen, “Formation Control of Marine Surface Craft: A Lagrangian Approach,” IEEE J. Ocean. Eng., Vol. 31, No. 4, pp. 922-934, 2006.
[8] M. Porfiri, D. G. Roberson & D. J. Stilwell, “Tracking and formation control of multiple autonomous agents: A two-level consensus approach,” Automatica, Vol. 43, pp. 1318-1328, 2007.
[9] A. V. Savkin, “Coordinated collective motion of group of autonomous mobile robot: analysis of Vicsek model,” IEEE Trans. Autom. Contr., Vol. 49, No. 6, pp. 981-983, 2004.
[10] Z. X. Liu & L. Guo, “Connectivity and synchronization of multi agent system,” in Proc. 25th Chinese Control Conference, Hrbin, pp. 373-378, 2006. (in Chinese)
[11] J. K. Parrish, S. V. Viscido, & D. Grunbaum, “Self-organized fish schools: An Examination of Emergent Property,” The Biological Bulletin, Vol. 202, No. 3, pp. 296-305, Jun. 2002.
[12] L. Moreau, “Stability of multiagent systems with time dependent communication links,” IEEE Trans. Autom. Contr., Vol. 50, No. 2, pp. 169-181, 2005.
[13] T. Vicsek, A. Czirok, E. B. Jacob, & I. Cohen, “Novel type of phase transition in a system of self-driven particles,” Phys. Rev. Let., Vol. 75, pp. 1226-1229, 1995.
[14] Z. X. Liu & L. Guo, “Synchronization of Vicsek Model With Large Population,” proceeding of 26th Chinese Control Conference, pp. 6-673-6-677, 2007.
[15] Y. M. Chen & Y. Tsui, “Limitations to the large strain theory. ” Int. J. for Num. Meth. in Eng., 33:101-114, 2001.
[16] J. J. Slawianowski, “Analytical mechanics of finite homogeneous strains,” Arch. Mech., Vol. 26, No. 4, pp. 569-587, 1974.
[17] H. Cohen, Pseudo-rigid bodies. Utilitas Math. Vol. 20, 221-247, 1981.
[18] R.G. Muncaster, “Invariant manifolds in mechanics I: the general construction of coarse theories from fine theories,” Arch. Rational Mech. Anal. Vol. 84, pp. 353-373, 1984.
[19] H. Cohen & R. G. Muncaster, The Theory of Pseudo-rigid Bodies, Springer-Verlag New York Inc., 1988.
[20] D. Lewis & J. C. Simo, “Nonlinear stability of rotating pseudo-rigid bodies,” in Proc. Roy. Soc. Lon., A 427, pp. 281-319, 1990.
[21] M. Epstein, & R. I. Defaz, “The pseudo-rigid rolling coin.” J. of Applied Mechanics, Vol. 72, pp. 695-704, 2005.
[22] H. M. Peng, L. S. Wang, & Y. H. Pao, “Dynamic Characteristics of Pseudo-Rigid Motions, Submitted for publication,” 2007.
[23] S. L. Hsu, H. M. Peng & L. S. Wang, “Modeling of Radius-varying Wheels as Pseudo-Rigid Bodies and their Stability,” Proceedings of the 2007 Cross-Strait Workshop on Controls, 2007.
[24] R.W. Beard, J. Lawton, & F.Y. Hadaegh, “A Coordination Architecture for Spacecraft Formation Control,” IEEE Trans. Control Systems Tech., Vol. 9, No. 6, pp. 777-790, Nov. 2001.
[25] S. Singh, M. Pachter, P. Crandler, S. Banda, S. Rasmussem, & C. Schumacher, “Input-Output Invertibility and Sliding Mode Control for Close Formation Flying of Multiple UAVs,” Inter. J. Robust and Nonlinear Control, Vol. 10, pp. 779-797, 2000.
[26] B. J. Young, R. W. Beard, & J. M. Kelsey, “A Control Scheme for Improving Multi-vehicle Formation Maneuvers,” in Amer. Contr. Conf., pp.704-709, 2001.
[27] M. Veloso, M. Bowling, S. Achim, K. Han & P. Stone, “The CMUnited-98 Champion Small Robot Team,” in RobotCup-98: Robot Soccer World Cup II, ed. M. Asada, H. Kitano, Springer-Verlag, 1999.
[28] I. F. Ihle, J. Jouffroy, & T. I. Fossen, “Formation control of marine surface craft: A lagrangian approach,” IEEE J. Ocean.Eng., Vol. 31, No. 4, pp. 922-934, 2006.
[29] M. Porfiri, D. G. Roberson & D. J. Stilwellb, “Tracking and formation control of multiple autonomous agents: A two-level consensus approach,” Automatica, Vol. 43, No. 8 pp. 1318-1328, 2007.
[30] S. Carpin & L. Parker, “Cooperative leader following in a distributed multi-robot system,” in Proc. IEEE Int. Conf. Robotics & Automation, Vol. 3, pp. 2994-3001, 2002.

[31] J. Shao, G. Xie, J. Yu, & L. Wang, “Leader-following formation control of multiple mobile robots,” in Proc. IEEE/RSJ Int. Symp. Intelligent Control, pp. 808-813, 2005,.
[32] L. E. Parker, “On the design of behavior-based multi-robot teams,” J. Adv. Robotics, Vol. 10, No. 6, pp. 547-578, 1996.
[33] C. R. McInnes, “Autonomous ring formation for a planar constellation of satellites,” AIAA J. Guidance, Contr., and Dyn., Vol. 18, No. 5, pp. 1215-1217, 1995.
[34] T. Eren, P. N. Belhumeur, & A. S. Morse, “Closing ranks in vehicle formations based rigidity,” in Proc. IEEE Conf. Decision and Control, Vol. 3, pp. 2959-2961, 2002.
[35] C. Belta & V. Kumar, “Abstraction and control for groups of robots,” IEEE Trans. Robotics, Vol. 20, No. 5, pp. 865-875, 2004.
[36] David G. Luenberger, “Introduction to linear and nonlinear programming,” Addison Wesley,1973
[37] C. E. Weatherburn. Advanced Vector Analysis. G. BELL AND SONS, LTD, 1928.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42537-
dc.description.abstract本論文主要為發展一可改變隊形之多載具運動模式,將擬剛體形變的理論應用在最佳化的隊形設計上,整個系統的隊形變化由一齊性形變張量所規範,稱之為擬剛體隊形,每一個載具的位置可透過隊形幾何中心的位置及齊性形變張量求得。從幾何的觀點來看,擬剛體運動之系統可用 來描述,係一維度為12的空間,設計一個隊形在空間中移動的問題可以簡化為求解12個系統變數。避開障礙物及到達目標的最佳化設計成本函數可以由系統變量及隊形的初始狀態來表示,所獲得的最佳化隊形可以容許發生旋轉、拉伸及剪應變等變形。根據實例設計結果驗證我們的研究是可行且有效的。zh_TW
dc.description.abstractThe main purpose of this thesis is to design the motion of a multi-agent system which can change its formation. We apply the pseudo-rigid body theory to design the optimal formation, which can be controlled by a homogenous deformation gradient tensor. Such concept is called a Pseudo-Rigid Formation. The position of each agent can be determined by the position of geometric center and a homogenous deformation gradient tensor. In geometry, the configuration space is the product of the three dimensional real vector space and the general linear group , a twelve dimensional manifold. The design of the formation for a system with many agents moving in space can be then transformed into that of the twelve system variables. The objective function in the optimal design for collision avoidance and destination approaching can be represented by the system variables and the initial configuration
of the system.The optimal formation of our system are allowed to translate, rotate, stretch, and shear. By the design examples, the proposed scheme is feasible and
effective.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:15:44Z (GMT). No. of bitstreams: 1
ntu-98-R96543013-1.pdf: 1565866 bytes, checksum: 6a75f92dbe05a44010a07cf45e0d1e93 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝................................................................i
中文摘要...........................................................ii
英文摘要..........................................................iii
目錄...............................................................iv
圖目錄..............................................................v
第一章 緒論.........................................................1
1.1 研究動機.................................................1
1.2 文獻回顧.................................................2
1.3 內容簡介.................................................3
1.4 論文架構.................................................3
第二章 擬剛體隊形...................................................4
2.1 擬剛體的特性.............................................4
2.2 二維擬剛體隊形表示法.....................................8
2.3 三維擬剛體隊形表示法....................................10
2.4 避障之成本函數設計......................................12
第三章 路徑規劃....................................................15
第四章 最佳化隊形設計..............................................23
4.1 二維最佳化隊形設計......................................23
4.2 二維最佳化隊形設計範例..................................29
4.3 三維最佳化隊形設計......................................33
4.2 三維最佳化隊形設計範例..................................35
第五章 結論及未來工作..............................................38
附錄...............................................................39
參考文獻...........................................................40
dc.language.isozh-TW
dc.subject控制zh_TW
dc.subject擬剛體zh_TW
dc.subject隊形zh_TW
dc.subject虛結構zh_TW
dc.subjectformationen
dc.subjectpseudo-rigiden
dc.subjectvirtual structureen
dc.subjectcontrolen
dc.title多載具擬剛體隊形之設計zh_TW
dc.titlePseudo-Rigid Formation Design For Multi-Agent Sytemen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor張帆人
dc.contributor.oralexamcommittee王伯群,鄭張權,連豊力
dc.subject.keyword擬剛體,隊形,控制,虛結構,zh_TW
dc.subject.keywordpseudo-rigid,formation,control,virtual structure,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved