請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42534
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 俞何興 | |
dc.contributor.author | Ling-Wen Liu | en |
dc.contributor.author | 劉玲雯 | zh_TW |
dc.date.accessioned | 2021-06-15T01:15:41Z | - |
dc.date.available | 2010-08-03 | |
dc.date.copyright | 2009-08-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-28 | |
dc.identifier.citation | 中文部份
何春蓀 (1982) 臺灣地體構造的演變-臺灣地體構造圖說明書,共126頁。 何春蓀 (1986) 臺灣地質概論-臺灣地質圖說明書,第二版,經濟部中央地質調查所,共164頁。 王鑫 (1988) 地形學,初版,聯經出版社,共356頁。 賴進貴 (1994) 稜線及谷系自動析取的可行性分析和評估,行政院國家科學委員會專題研究計畫成果報告,共65頁。 陳曉慧 (2000) 高屏海底峽谷上游曲流型態及其可能的成因,國立台灣大學海洋研究所碩士論文。 陳之馨 (2001) 澎湖峽谷數值地形模型之分析模擬,國立台灣大學海洋研究所碩士論文。 王瑞民 (2001) 地理資訊系統,初版,高立圖書有限公司,共238頁。 施保旭 (2001) 地理資訊系統,第三版,儒林圖書有限公司,共696頁。 周天穎 (2005) 地理資訊系統理論與實務,第二版。 蔡博文、丁志堅 (2005) 新一代地理資訊系統-ArcView 9.X剖析,初版,仲琦科技股份有限公司 莊惠如 (2006) 台灣西南海域泥貫入體分佈與構造活動之關係,國立台灣大學海洋研究所碩士論文。 黃任億 (2006) 台灣西南海域高屏陸坡盆地及澎湖海底峽谷-水道系統的沉積作用及演化,國立台灣大學海洋研究所博士論文。 吳佳瑜 (2008) 台灣南部海域海底崩移之分佈與特徵,國立台灣大學海洋研究所碩士論文。 英文部分 Angelier, J. (1986) Geodynamics of the Eurasia-Philippine Sea Plate boundary:preface. Tectonophysics, 125(1-3): Ⅸ-Ⅹ. Band, L. E. (1986) Topographic Partition of Watersheds with Digital Elevation Models. Water Resources Research, 22(1): 15-24. Burrough, P. A. (1986) Principles of Geographical Information Systems for Land Resources Assessment, Oxford: Clarendon Press. Clowes, A. and Comfort, P. (1987) Process and landform : an outline of contemporary geomorphology. 2nd edition, Oliver & Boyd, 335pp. Chiang, C. S., Yu, H. S., Chou, Y. W. (2004) Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Research, 16: 65-78. Chiang, C. S. and Yu, H. S. (2006) Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80: 199-213. Chiang, C. S. and Yu, H. S. (2008) Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan. Geo-Marine Letter, 28: 161-169. Covey, M. (1984) Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petroleum Geology Taiwan, 20: 53-83. Daly, R. A. (1936) Origin of submarine “canyons”. Am. J. Sci., 31: 401-420. Davies, J. L. (1977) Geographical variation in coastal development. London; New York: Longman, 204pp. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., Lin, J. C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426: 648-651. Farre, J. A., McGregor, B. A., Ryan, W. B. F., Robb, J. M. (1983) Breaching the shelfbreak: passage from youthful to mature phase in submarine canyon evolution. In: Stanley, D. J., Moore, G. T. (eds.), The Shelfbreak:Critical Interface on Continental Margins. Soc. Econ. Paleontol. Mineral. Sp. Publ., 33: 25-39. Flood, R. D. and Damuth, J. E. (1987) Quantitative characteristics of sinuous distributary channels on the Amazon Deep-Sea Fan. Geological Society of America Bulletin, 98: 728-738. Greene, H. G., Lee, W. H. K., McCulloch, D. S., Brabb, E. E. (1973) Faults and earthquakes in the Monterey Bay region, California. US Geol. Surv. Misc. Field Invest. Map MF-515. Greene, H. G. (1977a) Geology of the Monterey Bay region. U.S. Geol. Surv. Open-File Rep. 50. Greene, H. G. (1977b) Monterey Submarine Canyon. Calif. Geology, 30: 112-113. Greene, H. G. and Hicks, K. R. (1990) Ascension-Monterey canyon system:history and development. In: Garrison, R. E., Greene, H. G., Hicks, K. R., Weber, G. E., Wright, T. L.(eds.) Geology and Tectonics of the Central California Coastal Region, San Francisco to Monterey. Pac. Sect. AAPG, GB-67: 229-250. Greene, H. G., Clarke, S. H., Jr., Kennedy, M. P. (1991) Tectonic evolution of submarine canyons along the California continental margin. In: Osborne, R. H. (ed.), From Shoreline to Abyss. Soc. Econ. Paleontol. Mineral. Spec. Publ., 46: 291-312. Greene, H. G., Maher, N. M., Paull, C. K. (2002) physiography of the Monterey Bay National Marine Sanctuary and implications about continental margin development. Marine Geology, 181: 55-82. Ho, C. S. (1988) An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan. Central Geol. Surv., Minist. Eco. Affairs, Taipei, 192pp. Jackson, Julia A. (ed.) (1997) Glossary of Geology. 4th edition, American Geological Institute, 769pp. Kelling, G. and Stanley, D. J. (1970) Morphology and structure of Wilmington and Baltimore Submarine Canyons, eastern United States. Geology, 78: 637-660. Kastens, K. A. and Shor, A. N. (1986) Evolution of a channel meander on the Mississippi deep-sea fan. Marine Geology, 71: 165-175. Knighton, D. (1998) Fluvial Forms & Processes. 1st edition, London, 383pp. Kolla, V., Posamentier, H. W., Wood, L. J. (2007) Deep-water and fluvial sinuous channels-Characteristics, similarities and dissimilarities, and modes of formation. Marine and Petroleum Geology, 24: 388-405. Leopold, L. B. and Wolman, M. G. (1957) River channel pattern: Braided, meandering and straight. U.S. Geological Survey Professonal Paper, 282-B: 39-85. Lee, J. (1991) Comparison of Existing Methods for Building Triangulated Irregular Network Models of Terrain from Grid Digital Elevation Models. International Journal of Geographical Information Systems, 5(3): 267-285. Liu, C. S., Lundberg, N., Reed, D. L., Huang, Y. L. (1993) Morphological and Seismic characteristics of the Kaoping Submarine Canyon. Marine Geology, 111: 93-108. Liu, C. S., Huang, Y. L., Teng, L. S. (1997) Structural features off southwestern Taiwan. Marine Geology, 137: 305-319. Lastras, G., Canals, M., Urgeles, R., Amblas, D., Ivanov M., Droz, L., Dennielou, B., Fabrés, J., Schoolmeester, T., Akhmetzhanov, A., Orange, D., García-García, A. (2007) A walk down the Cap de Creus canyon, Northwestern Mediterranean Sea: Recent processes inferred from morphology and sediment bedforms. Marine Geology, 246: 176-192. Liu, J. T., Huh, C. A., You, C. F. (eds.)(2009) Fate of Terrestrial Substances on the Gaoping (Kaoping) Shelf/Slope and in the Gaoping Submarine Canyon off SW Taiwan. Journal of Marine Systems, 76(4): 367-510. McKenzie, D. P. and Morgan, W. J. (1969) Evolution of triple junctions. Nature, 224: 125-133. McGregor, B. A. and Bennett, R. H. (1979) Mass movement of sediment on the continental slope seaward of the Baltimore Canyon Trough. Marine Geology, 33: 163-174. McGregor, B. A., Stubblefield, W. L., Ryan, W. B. F., Twichell, D. C. (1982) Wilmington Submarine Canyon:A marine fluvial-like system. Geology, 10: 27-30. Mark, D. M. (1983) Relations between Field-Surveyed Channel Networks and Map-Based Geomorphometric Measures, Inez, Kentucky. Annals of the Association of American Geographers, 73(2): 358-372. Mark, D. M. (1984) Automated Detection of Drainage Networks from Digital Elevation Models. Cartographica (Auto-Carto Six Selected Papers), 21(2&3): 168-178. Milliman, J. D., Syvitski, J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Geology, 100: 525-544. Mulder, T., Syvitski, J. P. M., Migeon, S., Faugères, J. C., Savoye, B. (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20: 861-882. Mulder, T., Cirac, P., Gaudin, M., Bourillet, J. F., Tranier, J., Normand, A., Weber, O., Griboulard, R., Jouanneau, J. M., Anschutz, P., Jorissen, F. J. (2004) Understanding continent–ocean sediment transfer. EOS, 85: 257–262. Nagel, D. K., Mullins, H. T., Greene, H. G. (1986) Ascension Submarine Canyon, California-Evolution of a multi-head canyon system along a strike-slip continental margin. Marine Geology, 73: 285-310. O’Callaghan, J. F. and Mark, D. M. (1984) The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28: 323-344. Pirmez, C. and Imran, J. (2003) Reconstruction of turbidity currents in Amazon Channel. Marine and Petroleum Geology, 20:823–849. Pratson, L. F., Ryan, W. B. F., Mountain, G. S., Twichell, D. C. (1994) Submarine canyon initiation by downslope-eroding sediment flows:Evidence in late Cenozoic strata on the New Jersey continental slope. Geological Society of America Bulletin, 106: 395-412. Ridente, D., Foglini, F., Minisini, D., Trincardi, F., Verdicchio, G. (2007) Shelf-edge erosion, sediment failure and inception of Bari Canyon on the Southwestern Adriatic Margin (Central Mediterranean). Marine Geology, 246: 193-207. Schumm, S. A. (1963) Sinuosity of Alluvial Rivers on the Great Plains. Geological Society of America Bulletin, 74: 1089-1100. Shepard, F. P. and Dill, R. F. (1966) Submarine Canyons and Other Sea Valleys. Rand McNally, Chicago, 381pp. Shepard, F. P. and Emery, K. O. (1973) Congo Submarine Canyon and Fan Valley. AAPG Bull., 57: 1679-1691. Schumm, S. A. (1981) Evolution and response of the fluvial system, sedimentologic implications. Society of Economic Paleontologists and Mineralogists Special Publication, 31: 19-29. Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4: 67-89. Stubblefield, W. L., McGregor, B. A., Forde, E. B., Lambert, D. N., Merrill, G. F. (1982) Reconnaissance in DSRV Alvin of a “fluvial-like” meander system in Wilmington Canyon and slump features in South Wilmington Canyon. Geology, 10: 31-36. Shepard, F. P. (1981) Submarine canyons: multiple causes and longtime persistence. AAPG Bull., 65: 1062–1077. Selby, M. J. (1985) Earth’s changing surface: Oxford University, Great Britan, 607pp. Schumm, S. A. (1985) Patterns of alluvial rivers. Annual Review of Earth and Planetary Sciences, 13: 5-27. Soh, W., Tokuyama, H., Fujioka, K., Kato, S., Taira, A. (1990) Morphology and Development of a Deep-Sea Meandering Canyon (Boso Canyon) on an Active Plate Margin, Sagami Trough, Japan. Marine Geology, 91: 227-241. Sun, S. C., Liu, C. S. (1993) Mud diapirs and submarine channel deposits in offshore Kaohsiung-Hengchun, Southwest Taiwan. petroleum geology Taiwan, 28: 1-14. Tjeerd C. E. van Weering and Phil P. E. Weaver (eds.)(2007) Canyon processes; an introduction. Marine Geology, 246: 65-67. Veatch, A. C. and Smith, P. A. (1939) Atlantic submarine valleys of the United States and the Congo Submarine Valley: Geological Society of America Special Paper 7, 101pp. Welch, R. A. (1990) 3-D Terrain Modeling for GIS Applications. GIS World, 3(5): 26-30. Yu, H. S., Huang, C. S. and Ku, J. W. (1991) Morphology and possible origin of the Kaoping Submarine Canyon head off southwest Taiwan. Acta Oceanographica Taiwanica, 27: 40-50. Yu, H. S. and Chiang, C. S. (1995) Morphology and origin of the Hongtsai submarine canyon west of the Hengchun peninsula, Taiwan. Journal of the geological society of China, 38(1): 81-93. Yu, H. S. and Lu, J. C. (1995) Development of the shale diapir-controlled Fangliao Canyon on the continental slope off southwestern Taiwan. Journal of Southeast Asian Earth Sciences, 11(4): 256-276. Yu, H. S. and Chiang, C. S. (1997) Kaoping shelf: morphology and tectonic significance. Journal of Asian Earth Sciences, 15(1): 9-18. Yu, S. B., Chen, H. Y., Kuo, L. C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274: 41-59. Yu, H. S., Chou, Y. W. (2001) Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333: 277-291. Yu, H. S. (2003) Geological characteristics and distribution of submarine physiographic features in the Taiwan region. Mar. Georesour. Geotechnol, 21: 139-153. Yu, H. S. (2004) An under-filled foreland basin in the northern South China Sea off Southwest Taiwan: incipient collision and foreland sedimentation. In: Clift P, Wang P, Kuhnt W, Hall R, Tada R (eds) Continent-ocean interactions within East Asian marginal seas. Geophys. Monogr. Ser., 149: 159-173. Yu, H. S., Chiang, C. S. and Shen, S. M. (2009) Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping(Kaoping) Submarine Canyon. Journal of Marine Systems, 76: 369-382. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42534 | - |
dc.description.abstract | 發育在臺灣西南海域的高屏海底峽谷,流路長且型態多變,峽谷頭部直接和陸上的高屏溪連接,彎曲的流路切過整個高屏棚坡區,一路延伸到高屏陸坡底部,最後和馬尼拉海溝北端相連接,成為輸送臺灣造山帶沉積物到馬尼拉海溝的重要通道。
本文應用陸上的水文法在海底地形的分析,透過地理資訊系統的操作,模擬出高屏海底峽谷的流徑,計算出其谷徑曲率、流徑坡度與峽谷的水道坡度,根據曲率數值的大小分為直線型(Straight)、過渡型(Transitional)、勻稱型(Regular)、不勻稱型(Irregular)以及扭曲型(Tortuous),藉此依照相同的曲率數值界定標準來做分類,可客觀的描述其流路形貌特徵並比較峽谷流徑的彎曲程度,討論其曲流型態和水道坡度、構造特徵以及沉積物傳輸之間的相互影響,與峽谷流徑形成彎曲流路的可能原因,進而探討沉積物輸送上的意義。 根據模擬出的高屏海底峽谷流徑,總長約260公里,谷徑曲率1.59,屬於勻稱型的流路型態,從谷徑的平面流路可以看出高屏海底峽谷有兩個急劇的轉折點,依據這兩個轉折點將峽谷分為上、中、下游三個部份,峽谷中游沿著線性構造幾乎呈直線走向,峽谷上、下游均有顯著的曲流特徵,流路型態明顯和周圍的峽谷流徑不同。峽谷的上游位於高屏陸棚與高屏陸坡上部,總長約92公里,谷徑曲率1.64,接近不勻稱型的流路型態,峽谷轉彎的半徑平均約為2.3公里,相較於下游峽谷轉彎的平均半徑(約為3.7公里)為小,曲流弧範圍也相對較小;峽谷下游位於高屏陸坡下部,總長約104公里,谷徑曲率1.47,接近勻稱型的流路型態,峽谷轉彎的半徑則較上游大,曲流弧範圍也相對較大。 高屏海底峽谷上游周圍的海床坡度有兩個明顯的分界點,依據分界點將峽谷上游細分為上、中、下段,分別計算其流徑曲率、流徑坡度與水道坡度,發現峽谷的流徑曲率值會和水道坡度有一相對正比的關係,曲流的產生可將海底峽谷的流徑導向一平衡剖面的狀態,而峽谷流徑周圍坡度的改變,可視為形成峽谷上游曲流型態的因素之ㄧ。而濁流沉積物在上游峽谷內的傳輸,會在彎曲谷徑的外側發生明顯的侵蝕作用,使得外側谷壁坡度往往會比內側陡峭,還會有沉積物溢出而堆積在谷壁的上方,在內側谷壁則有崩落和滑移的現象,造成沉積物的堆積,峽谷底部也不時會有沉積物侵蝕和堆積的交互作用,顯示濁流沉積物傳輸的侵蝕、經過與堆積作用,確實會與峽谷的流路型態有相互的影響;上游峽谷彎曲谷徑的兩側有泥貫體的入侵,抬升了原本陸棚陸坡地層的基準面,也相對增加沉積物流下切侵蝕的作用力,沉積物流主要以侵蝕、經過為主,無法分辨出內、外曲流彎的特徵,因此部分上游峽谷的流徑方向勢必會受到泥貫入體的影響。 高屏海底峽谷下游則受到泥貫體入侵和逆衝斷層構造的影響,當沉積物經過長距離的搬運輸送到下游峽谷時,沉積物重力流對峽谷所產生的能級會減少許多,加上下游峽谷的壁緣落差較小,所以彎曲谷徑的內、外曲流彎特徵並不明顯。在下游峽谷的上段有一海底扇形成,峽谷底部在此區域形成寬廣且平坦的U型橫剖面,形成原因類比於深海扇上的海底水道,濁流沉積物的傳輸在平坦的海底扇上較不受拘束,使得峽谷流路會形成暫時的擺動震盪,谷徑彎曲的半徑與範圍相對較上游峽谷大,位於深海扇上的下游峽谷上段,流徑曲率明顯大於在深海扇上以外的峽谷下段,谷徑流路透過曲率的增加,使得峽谷流徑趨向均衡的剖面;下游峽谷的下段則由於構造抬升的影響,恢復下切的侵蝕力,使得峽谷也恢復呈現V型的橫剖面,沒有明顯的曲流特徵。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:15:41Z (GMT). No. of bitstreams: 1 ntu-98-R96241310-1.pdf: 8092889 bytes, checksum: 0b17b0ba6577346fc2bb5e4f66c9cf8c (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 論文口試委員審定書……………………………………………………Ⅰ
誌謝………………………………………………………………………Ⅱ 摘要………………………………………………………………………Ⅲ 圖目錄……………………………………………………………………Ⅶ 表目錄……………………………………………………………………Ⅸ 第一章 序論……………………………………………………………1 1.1 前人研究…………………………………………………………4 1.2 動機與目的………………………………………………………15 第二章 研究區域地質背景……………………………………………17 2.1 臺灣大地構造概況………………………………………………17 2.2 臺灣西南海域的海底形貌特徵…………………………………17 2.2-1 高屏陸棚、陸坡………………………………………………17 2.2-2 海底峽谷………………………………………………………18 第三章 研究方法………………………………………………………23 3.1 數值地形模型……………………………………………………23 3.2 水文法……………………………………………………………25 3.3 地理資訊系統……………………………………………………26 3.4 水系分析的製圖步驟……………………………………………29 第四章 水道的曲流型態………………………………………………34 4.1 陸上的河流………………………………………………………35 4.2 深海扇上的海底水道……………………………………………40 4.3 海底峽谷…………………………………………………………45 4.3-1 Boso Canyon…………………………………………………45 4.3-2 Wilmington Canyon…………………………………………48 4.3-3 Monterey Canyon……………………………………………50 第五章 討論……………………………………………………………54 5.1 高屏海底峽谷的曲流特徵………………………………………55 5.1-1 峽谷上游的曲流特徵…………………………………………57 5.1-1-1 水深橫剖面圖……………………………………………57 5.1-1-2 峽谷流徑曲率與水道坡度之間的關係…………………61 5.1-2 峽谷下游的曲流特徵…………………………………………64 5.1-2-1 水深橫剖面圖……………………………………………64 5.1-2-2 峽谷流徑曲率與水道坡度之間的關係…………………68 5.2 高屏海底峽谷的構造特徵與沉積物傳輸對曲流型態的影響…71 5.2-1 峽谷上游……………………………………………………71 5.2-2 峽谷下游……………………………………………………73 第六章 結論……………………………………………………………76 參考文獻…………………………………………………………………78 | |
dc.language.iso | zh-TW | |
dc.title | 高屏海底峽谷的曲流特徵及其在沉積物傳輸的意義 | zh_TW |
dc.title | Sinuosity and Sediment Dispersal of Meandering Segments in the Kaoping Submarine Canyon | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪奕星,陳汝勤,張翠玉 | |
dc.subject.keyword | 高屏海底峽谷,峽谷形貌特徵,曲流型態,水文法,地理資訊系統, | zh_TW |
dc.subject.keyword | Kaoping submarine canyon,canyon morphology,meandering,hydrologic approach,GIS, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-28 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 7.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。