請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42533完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張帆人 | |
| dc.contributor.author | Yen-Pin Tseng | en |
| dc.contributor.author | 曾彥彬 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:15:39Z | - |
| dc.date.available | 2012-08-06 | |
| dc.date.copyright | 2009-08-06 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | [1] P. Misra, P. Enge, Global Positioning System: Signals, Measurements, and Performance, Ganga-jamuna Press, Lincoln, 2001.
[2] E. D.Kaplan, Understanding GPS: Principles and Applications, Artech House Publishers, 1996. [3] ICD-GPS-200D (2004) [4] Lionel Garin, SaiPradeep Venkatraman, Pramod Gupta, A Novel Ephemeris Extension Compaction/ Decompaction method, Proceedings of the 63rd Annual Meeting April 23 – 25,2007 [5] K. Madsen, H.B. Nielsen, O. Tingleff , Methods For Non-linear Least Squares Problems 2nd Edition, April 2004 [6] J.E. Dennis, Jr. and R.B. Schnabel , Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall. (1983): [7] Britting, K. R., Inertial Navigation Systems Analysis, Wiley, New York, 1971. [8] 姜光遠, “以粗估星曆增進GPS訊號擷取效率”,台大電機所碩士論文,中華民國97年 [9] 劉添雷, “應用類神經網路與多項式曲線擬合估測GPS衛星軌道與星曆”, 台科大機械工程系碩士論文, 中華民國96年. [10] http://igscb.jpl.nasa.gov/ [11] http://www.gpsworld.com/ [12] Philip G. Mattos , Self-Assisted GPS , 2009 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42533 | - |
| dc.description.abstract | 一般由粗估星曆(Almanac)計算出全球衛星定位系統(Global Positioning System,簡稱GPS)之衛星軌道,在一週的時間內,其位置誤差約在1~3km,如何改善其誤差,使得由粗估星曆所計算出來之衛星位置更加準確,是我們的主要目標。
首先,我們針對第1天,該天之粗估星曆,計算出之後7天的衛星位置,再由精確星曆亦求出此7天的衛星位置,將此兩份衛星位置相減,可得到衛星位置誤差,而分析其趨勢行為,可以發現在第1天之誤差大約在2至3公里左右,然後緩慢收斂,在第4天時其誤差達到最小極限,約在1公里左右,接著其誤差行為則成持續發散的現象。 根據以上所描述衛星位置誤差的行為,我們觀察到,在第1到4天時其衛星位置誤差雖然相對較小,但就規律性並不佳,而觀察在第5至8天的時候,其誤差雖然較第1到4天大,但相對來說其趨勢較為規律。所以我們利用此特性,設計出兩種預估衛星位置之演算法來改進粗估星曆所計算出的衛星位置精準度。衛星位置預估演算法I為取出第1天之位置誤差曲線,利用曲線擬合(curve fitting)的方式,建立一誤差模型,再利用此誤差模型外插推算第2天之誤差;再由第1天之粗估星曆計算出第2天的GPS衛星位置,將兩者結合,進而估計出第2天之衛星位置。衛星位置預估演算法I則是取出第5天的衛星位置誤差曲線,同樣的作曲線擬合建立誤差模型,然後再由此誤差模型去外插推算第6天的誤差;再由原先的粗估星曆計算出第6天的衛星位置,兩者結合,進而得到第6天估計的衛星位置。 從計算結果可以得到,利用衛星位置預估演算法I的粗估星曆加上誤差預估模型,所估計出來的衛星位置誤差約可以保持在0.8公里左右,衛星位置預估演算法II的粗估星曆加上誤差預估模型,其求出來的衛星位置誤差約可以保持在0.3公里左右,比單純的使用該天的粗估星曆所計算出來的衛星位置誤差約在2~3公里有所改進,亦比使用前4天的粗估星曆所計算出來的衛星位置誤差約在1公里左右有所改進。 | zh_TW |
| dc.description.abstract | In general , the GPS satellite positions computed from Almanac Data are not accurate enough. Their error are about 1~3 km within 1 week. How to improve the position errors is the main object of this thesis..
First we get the Almanac of the 1st day. Then we compute the satellite positions of the next days base on the Almanac(inaccurate satellite position). Also , we compute these ones based on the Ephemeris(accurate satellite position). Let the satellite position errors , are obtained by taking the difference between them. Some interesting trends are found . First , the errors of the first day are about 2~3 km. They will converge slowly to the minimal values about 1km at day4. Then , the errors will diverge. Based on the characters of the position errors , we also find that although the position errors during day1~4 are relative smaller , they are not regular. During day5~8 , the position errors are bigger but the regularity is better . We use the property of the trends , two algorithms to improve the satellite position errors computed by Almanac are developed . In Algorithm I a curve fitting method is used to establish the model parameters of the position errors of day1 This model is extrapolated to day2 for computing the satellite position errors . The estimated satellite positions of day2 are obtainded by adding the day2 positions by Almanac and the errors. In Algorithm II , a curve fitting method is used to establish the best model parameters of the position error of day5. This model is extrapolated to day 66 for computing the satellite position errors. The estimated satellite positions of day6 ard obtained by adding the day6 positions by Almanac and the errors. In the simulation result we can find out whether we use Algorithm I or Algorithm II, Almanac+Error Model Estimation , the position error can be less than 500m , which is better than just by Almanac , also is better than the Almanac which is 4 days ago, the position error is about 1km, to improve the position error of satellite position. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:15:39Z (GMT). No. of bitstreams: 1 ntu-98-R96921044-1.pdf: 5741779 bytes, checksum: 0b6eca3433acca4839c7b9903d932e2e (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究方向 1 1.3 論文架構 2 第二章 全球定位系統 3 2.1 前言 3 2.2 系統架構[1] 3 太空部份 3 控制站部份 6 使用者部份 7 2.3 座標系統[2] 7 2.3.1 地心慣性座標系統(Earth-Centered Space-Inertial Coordinate System) 8 2.3.2 地心地固座標系統(Earth-Centered Earth-Fixed Coordinate System) 8 2.3.3 衛星軌道座標系統 (Satellite Orbit Coordinate System) 11 2.3.4 WGS84座標系統 13 2.4 時間系統[7] 16 2.4.1 世界時間系統 16 2.4.2 原子時系統 19 2.4.3 世界協調時 (Coordinate Universal Time, UTC) 21 2.4.4 GPS時 (GPS Time, GPST) 21 第三章 精密星曆 (Ephemeris) 和粗估星曆( Almanac) 23 3.1 前言 23 3.2 精密星曆[3][10] 23 3.3 粗估星曆 35 第四章 曲線擬合求解法 37 4.1 前言 37 4.2 問題介紹與定義 37 4.2.1 最小平方問題 (Least Squares Problem) 37 4.2.2 Global Minimizer 38 4.2.3 Local Minimizer 38 4.3 求解方法 40 4.3.1 深度遞減法 (Steepest Descent Method)[6] 40 4.3.2 牛頓法 (Newton Method) 40 4.3.3 高斯-牛頓法 (Gauss-Newton Method) 41 4.3.4 Levenberg-Marquardt Method[5] 42 4.4 粗估星曆 之衛星位置誤差分析[4][11][12] 45 第五章 衛星位置預估演算法 49 5.1 衛星位置預估演算法I 49 5.1.1 方法流程 49 5.1.2 環境設定 50 5.1.3 結果 52 5.2 衛星位置預估演算法II 56 5.2.1 方法流程 56 5.2.2 環境設定 57 5.2.3 結果 59 第六章 結果討論與未來展望 65 6.1 結論 65 6.2 未來展望 65 參考文獻 67 附錄A Leverberg-Marquardt 演算法之Matlab Code 69 附錄B 由精確星曆計算衛星位置之Matlab Code 73 附錄C 由粗估星曆計算衛星位置之Matlab Code 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 衛星軌道 | zh_TW |
| dc.subject | 全球衛星定位系統 | zh_TW |
| dc.subject | 曲線擬合 | zh_TW |
| dc.subject | 精確星曆 | zh_TW |
| dc.subject | 粗估星曆 | zh_TW |
| dc.subject | curve fitting | en |
| dc.subject | satellite orbit | en |
| dc.subject | Almanac | en |
| dc.subject | Ephemeris | en |
| dc.subject | GPS | en |
| dc.title | 利用曲線擬合方法改善由粗估星曆計算之GPS衛星位置精確度 | zh_TW |
| dc.title | Using Curve Fitting Method to Improve the Precision of GPS Satellites Position Computed by Almanac Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王立昇 | |
| dc.contributor.oralexamcommittee | 林君明,王和盛,姜義德 | |
| dc.subject.keyword | 全球衛星定位系統,曲線擬合,精確星曆,粗估星曆,衛星軌道, | zh_TW |
| dc.subject.keyword | GPS,curve fitting,Ephemeris,Almanac,satellite orbit, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
