Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42516
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 曾惠斌 | |
dc.contributor.author | Chung-Hui Hsiao | en |
dc.contributor.author | 蕭琮暉 | zh_TW |
dc.date.accessioned | 2021-06-15T01:15:16Z | - |
dc.date.available | 2014-07-31 | |
dc.date.copyright | 2009-07-31 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-28 | |
dc.identifier.citation | 施富凱, 主動攝影機多目標影像辨識與追蹤控制器研製, in 電機工程學系. 2007, 國立彰化師範大學: 彰化.
[2] 鄒鎮謙, 使用影像辨識之自動停車系統, in 車輛工程系碩士班. 2006, 國立臺北科技大學: 台北. [3] 吳韋翰, 影像辨識在停車場監控之應用與設計, in 電機與控制工程學系. 2005, 國立交通大學: 新竹. [4] 吳建碩, 道路鋪面破壞影像辨識系統之研究, in 工程技術研究所. 2005, 龍華科技大學: 桃園. [5] Choi, N., et al., Rapid 3D Object Recognition for Automatic Project Progress Monitoring using a Stereo Vision System. The 25th International Symposium on Automation and Robotics in Construction, 2008: p. 58-63. [6] Koo, B. and M. Fischer, Feasibility Study of 4D CAD in Commercial Construction. Journal of Construction Engineering and Management, 2000. 126(4): p. 251-260. [7] Webb, R.M., The potential of 4 D CAD as a tool for construction management. Journal of Construction Research, 2004. 5(1): p. 43. [8] North, S. Procession: using intelligent 3D information visualization to support client understanding during construction projects. in Visual Data Exploration and Analysis VII. 2000. San Jose, CA, USA: SPIE. [9] Liston, K., Focused sharing of information for multidisciplinary decision making by project teams. Electronic Journal of Information Technology in Construction, The, 2001. 6: p. 69. [10] Heesom, D. and L. Mahdjoubi, Trends of 4D CAD applications for construction planning. Construction Management and Economics, 2004. 22(2): p. 171-182. [11] Hartmann, T., J. Gao, and M. Fischer, Areas of Application for 3D and 4D Models on Construction Projects. Journal of Construction Engineering and Management, 2008. 134(10): p. 776-785. [12] Jung, Y. and S. Woo, Flexible Work Breakdown Structure for Integrated Cost and Schedule Control. Journal of Construction Engineering and Management, 2004. 130(5): p. 616-625. [13] Poku, S.E. and D. Arditi, Construction Scheduling and Progress Control Using Geographical Information Systems. Journal of Computing in Civil Engineering, 2006. 20(5): p. 351-360. [14] Bansal, V.K. and M. Pal, Generating, Evaluating, and Visualizing Construction Schedule with Geographic Information Systems. Journal of Computing in Civil Engineering, 2008. 22(4): p. 233-242. [15] Navon, R., Research in automated measurement of project performance indicators. Automation in Construction, 2007. 16(2): p. 176-188. [16] Navon, R. and R. Sacks, Assessing research issues in Automated Project Performance Control (APPC). Automation in Construction, 2007. 16(4): p. 474-484. [17] 1Huertas, A. and R. Nevatia, Detecting changes in aerial views of man-made structures. Image and Vision Computing, 2000. 18(8): p. 583-596. [18] El-Omari, S. and O. Moselhi, Integrating 3D laser scanning and photogrammetry for progress measurement of construction work. Automation in Construction, 2008. 18(1): p. 1-9. [19] Abeid, J., et al., PHOTO-NET II: a computer-based monitoring system applied to project management. Automation in Construction, 2003. 12(5): p. 603-616. [20] Abeid, J. and D. Arditi, Linking Time-Lapse Digital Photography and Dynamic Scheduling of Construction Operations. Journal of Computing in Civil Engineering, 2002. 16(4): p. 269-279. [21] Lukins, T.C., et al. Now you see it: the case for measuring progress with computer vision. in The Procceding of 4th International SCRI Research Symposium. 2007. Salford, UK. [22] Clerc, M. and J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 2002. 6(1): p. 58-73. [23] Kim, H. and N. Kano, Comparison of construction photograph and VR image in construction progress. Automation in Construction, 2008. 17(2): p. 137-143. [24] Ibrahim, Y.M., et al., Towards automated progress assessment of workpackage components in construction projects using computer vision. Advanced Engineering Informatics, 2008. In Press, Corrected Proof. [25] Zhang, X., et al., Automating progress measurement of construction projects. Automation in Construction, 2009. 18(3): p. 294-301. [26] Fard, M.G. and F. Pena-Mora. Application of Visualization Techniques for Construction Progress Monitoring. in Computing in Civil Engineering 2007. 2007. Pittsburgh, Pennsylvania, USA: ASCE. [27] Brilakis, I., L. Soibelman, and Y. Shinagawa, Material-Based Construction Site Image Retrieval. Journal of Computing in Civil Engineering, 2005. 19(4): p. 341-355. [28] Rebolj, D., et al., Automated construction activity monitoring system. Advanced Engineering Informatics, 2008. 22(4): p. 493-503. [29] McAndrew, A. and 徐. 譯, 數位影像處理. 2005, 台北市: 湯姆生出版. [30] 鍾國亮, 影像處理與電腦視覺導論. 2008: 台灣東華書局. [31] 賴岱佑 and 劉敏, 數位影像處理技術手冊. 2007: 松崗文魁. [32] 連國珍, 數位影像處理MATLAB. 四版 ed. 2007: 儒林圖書. [33] Radke, R.J., et al., Image change detection algorithms: a systematic survey. Image Processing, IEEE Transactions on, 2005. 14(3): p. 294-307. [34] Stauffer, C. and W.E.L. Grimson, Learning patterns of activity using real-time tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000. 22(8): p. 747-757. [35] Peng, S. and W. Yanjiang. An improved adaptive background modeling algorithm based on Gaussian Mixture Model. in Signal Processing, 2008. ICSP 2008. 9th International Conference on. 2008. 施富凱, 主動攝影機多目標影像辨識與追蹤控制器研製, in 電機工程學系. 2007, 國立彰化師範大學: 彰化. [2] 鄒鎮謙, 使用影像辨識之自動停車系統, in 車輛工程系碩士班. 2006, 國立臺北科技大學: 台北. [3] 吳韋翰, 影像辨識在停車場監控之應用與設計, in 電機與控制工程學系. 2005, 國立交通大學: 新竹. [4] 吳建碩, 道路鋪面破壞影像辨識系統之研究, in 工程技術研究所. 2005, 龍華科技大學: 桃園. [5] Choi, N., et al., Rapid 3D Object Recognition for Automatic Project Progress Monitoring using a Stereo Vision System. The 25th International Symposium on Automation and Robotics in Construction, 2008: p. 58-63. [6] Koo, B. and M. Fischer, Feasibility Study of 4D CAD in Commercial Construction. Journal of Construction Engineering and Management, 2000. 126(4): p. 251-260. [7] Webb, R.M., The potential of 4 D CAD as a tool for construction management. Journal of Construction Research, 2004. 5(1): p. 43. [8] North, S. Procession: using intelligent 3D information visualization to support client understanding during construction projects. in Visual Data Exploration and Analysis VII. 2000. San Jose, CA, USA: SPIE. [9] Liston, K., Focused sharing of information for multidisciplinary decision making by project teams. Electronic Journal of Information Technology in Construction, The, 2001. 6: p. 69. [10] Heesom, D. and L. Mahdjoubi, Trends of 4D CAD applications for construction planning. Construction Management and Economics, 2004. 22(2): p. 171-182. [11] Hartmann, T., J. Gao, and M. Fischer, Areas of Application for 3D and 4D Models on Construction Projects. Journal of Construction Engineering and Management, 2008. 134(10): p. 776-785. [12] Jung, Y. and S. Woo, Flexible Work Breakdown Structure for Integrated Cost and Schedule Control. Journal of Construction Engineering and Management, 2004. 130(5): p. 616-625. [13] Poku, S.E. and D. Arditi, Construction Scheduling and Progress Control Using Geographical Information Systems. Journal of Computing in Civil Engineering, 2006. 20(5): p. 351-360. [14] Bansal, V.K. and M. Pal, Generating, Evaluating, and Visualizing Construction Schedule with Geographic Information Systems. Journal of Computing in Civil Engineering, 2008. 22(4): p. 233-242. [15] Navon, R., Research in automated measurement of project performance indicators. Automation in Construction, 2007. 16(2): p. 176-188. [16] Navon, R. and R. Sacks, Assessing research issues in Automated Project Performance Control (APPC). Automation in Construction, 2007. 16(4): p. 474-484. [17] 1Huertas, A. and R. Nevatia, Detecting changes in aerial views of man-made structures. Image and Vision Computing, 2000. 18(8): p. 583-596. [18] El-Omari, S. and O. Moselhi, Integrating 3D laser scanning and photogrammetry for progress measurement of construction work. Automation in Construction, 2008. 18(1): p. 1-9. [19] Abeid, J., et al., PHOTO-NET II: a computer-based monitoring system applied to project management. Automation in Construction, 2003. 12(5): p. 603-616. [20] Abeid, J. and D. Arditi, Linking Time-Lapse Digital Photography and Dynamic Scheduling of Construction Operations. Journal of Computing in Civil Engineering, 2002. 16(4): p. 269-279. [21] Lukins, T.C., et al. Now you see it: the case for measuring progress with computer vision. in The Procceding of 4th International SCRI Research Symposium. 2007. Salford, UK. [22] Clerc, M. and J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 2002. 6(1): p. 58-73. [23] Kim, H. and N. Kano, Comparison of construction photograph and VR image in construction progress. Automation in Construction, 2008. 17(2): p. 137-143. [24] Ibrahim, Y.M., et al., Towards automated progress assessment of workpackage components in construction projects using computer vision. Advanced Engineering Informatics, 2008. In Press, Corrected Proof. [25] Zhang, X., et al., Automating progress measurement of construction projects. Automation in Construction, 2009. 18(3): p. 294-301. [26] Fard, M.G. and F. Pena-Mora. Application of Visualization Techniques for Construction Progress Monitoring. in Computing in Civil Engineering 2007. 2007. Pittsburgh, Pennsylvania, USA: ASCE. [27] Brilakis, I., L. Soibelman, and Y. Shinagawa, Material-Based Construction Site Image Retrieval. Journal of Computing in Civil Engineering, 2005. 19(4): p. 341-355. [28] Rebolj, D., et al., Automated construction activity monitoring system. Advanced Engineering Informatics, 2008. 22(4): p. 493-503. [29] McAndrew, A. and 徐. 譯, 數位影像處理. 2005, 台北市: 湯姆生出版. [30] 鍾國亮, 影像處理與電腦視覺導論. 2008: 台灣東華書局. [31] 賴岱佑 and 劉敏, 數位影像處理技術手冊. 2007: 松崗文魁. [32] 連國珍, 數位影像處理MATLAB. 四版 ed. 2007: 儒林圖書. [33] Radke, R.J., et al., Image change detection algorithms: a systematic survey. Image Processing, IEEE Transactions on, 2005. 14(3): p. 294-307. [34] Stauffer, C. and W.E.L. Grimson, Learning patterns of activity using real-time tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000. 22(8): p. 747-757. [35] Peng, S. and W. Yanjiang. An improved adaptive background modeling algorithm based on Gaussian Mixture Model. in Signal Processing, 2008. ICSP 2008. 9th International Conference on. 2008. [36] Bailo, G., et al. Background estimation with Gaussian distribution for image segmentation, a fast approach. in Measurement Systems for Homeland Security, Contraband Detection and Personal Safety Workshop, 2005. (IMS 2005) Proceedings of the 2005 IEEE International Workshop on. 2005. [37] Otsu, N., A Tlreshold Selection Method from Gray-Level Histograms. IEEE TRANSACTIONS ON SYSTREMS, MAN, AND CYBERNETICS, 1979. SMC-9(1). [38] Gonzalez, R.C., R.E. Woods, and S.L. Eddins, Digital image processing using MATLAB. 2005: Pearson. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42516 | - |
dc.description.abstract | 目前營造業之使用3D相關技術發展已漸臻成熟,但實務上應用多侷限於初期規劃設計,現階段僅作為與業主溝通或準備投標文件時的單純視覺化工具。規劃設計階段所建立之3D模型,於施工中未能配合實際情況進行即時更新,無法達到進度監控目的。本研究所發展之影像辨識比對匹配技術,可比對工地拍攝之施工影像與設計階段建置之3D模型影像,藉由影像間建築元件的差異,以協助專案人員瞭解工程實際進度與預期進度之落差。
本研究視覺化進度監控模式之建立程序如下:(1)辨識建築元件:分離影像背景與前景,辨識出工地照片以及3D模型照片不同時間點的新增建築元件。(2)比對物件特徵:比對、匹配兩組照片的前景建築物件之特徵,作為比較預期進度與實際施工進度差異依據。(3)分析容許誤差範圍:以合成之理想條件工程施工照片,確立影像辨識誤差容許範圍。(4)案例實證:實際驗證工地施工進度照片,建立影像辨識進度管控應用模式。 國內營造業目前未見以視覺化方式管控施工進度,透過本研究建立之影像辨識邏輯連結工程進度管理,可半自動比對施工現況與預計進度差異,提供即時進度資訊,期能達到自動化電腦視覺管控工程進度之目的。 | zh_TW |
dc.description.abstract | Although the 3D technology has been researched and developed during last two decades in construction industry, the application of 3D are still limited to the planning and designing stage of a construction project. 3D model are mainly used as visual-based tool for contractor to communicate with owner and prepare for bidding document. The schedule information in the 3D system cannot fulfill the need of monitoring the progress in the construction field because it cannot be updated in real time. This research tend to apply the well-developed image recognition and matching algorithms to compare different construction unit appearing in photos shoot in construction field with images retrieved from 3D as-planned model. The result of comparison can demonstrates the schedule difference in field and early planning expectation.
The research is conducted as following procedure: 1. Identify the construction unit appearing in both field photos and 3D images. 2. Comparison of characteristic description of every object identified. 3. Decide the allowed error range for each description factors. 4. Examine real construction photos and establish visual-based construction progress monitoring model. In Taiwan, there are few researches related with visual-based progress monitoring in construction field. This research constructed a progress measurement model through semi-automatic comparison of field photos and 3D images applying image recognition technology. The results are expected to provide the project manager with real-time information about actual field completion percentage and automatic measurement of construction progress. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:15:16Z (GMT). No. of bitstreams: 1 ntu-98-R95521716-1.pdf: 5687965 bytes, checksum: 5e3b9109e45b5d5c880d95f1e3abb489 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 論文口試委員審定書 一
誌謝 二 摘要 三 ABSTRACT 四 圖目錄 七 表目錄 一○ 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 研究目的 2 1.4 研究方法及流程 3 1.5 研究範圍及限制 5 1.6 小結 5 第二章 文獻回顧 6 2.1 4D於營造業之現況發展及未來趨勢 6 2.2 視覺化進度控制相關討論 8 2.3 應用影像辨識於進度管理相關研究 11 2.4 小結 15 第三章 研究方法 17 3.1 數位影像處理 17 3.2 辨識連續影像新增物件流程 32 3.3 區域特徵值 34 3.4 影像辨識比對技術 43 3.5 小結 46 第四章 影像辨識容許誤差範圍 47 4.1 數量誤差統計 49 4.2 位置誤差統計 49 4.3 形狀誤差統計 53 4.4 確立容許誤差範圍 55 4.5 小結 56 第五章 案例實證 57 5.1 案例基本資料 57 5.2 影像擷取過程 58 5.3 比對流程與結果 59 5.4 誤差分析 66 5.5 影像辨識問題及困難點 68 5.6 視覺化工程進度管控實際應用流程 70 5.7 小結 73 第六章 結論與建議 74 6.1 結論 75 6.2 後續研究建議 76 參考文獻 79 附錄 83 | |
dc.language.iso | zh-TW | |
dc.title | 應用影像辨識技術於營造業工程進度管控之研究 | zh_TW |
dc.title | Application of image recognition technology for monitoring construction progress | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐百輝,林祐正,張大鵬 | |
dc.subject.keyword | 工程影像辨識,視覺化進度管控,營建自動化, | zh_TW |
dc.subject.keyword | construction image recognition,visual progress monitoring,construction automation, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
Appears in Collections: | 土木工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-98-1.pdf Restricted Access | 5.55 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.