Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42515
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林巍聳
dc.contributor.authorBo-Yien Guoen
dc.contributor.author郭柏言zh_TW
dc.date.accessioned2021-06-15T01:15:15Z-
dc.date.available2012-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citationAdamek, T. and N. O'Connor (2003). Efficient contour-based shape representation and matching. Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval. Berkeley, California, ACM.
Arunrungrusmi, S. and K. Chamnongthai (2001). 'A Unique Starting Point of Planar Curves.' International Symposium on Communications and Information Technology (ISCIT): 4.
Cha-Sup, J. and J. Dong-Seok (1999). Hand-written digit recognition using Fourier descriptors and contour information. TENCON 99. Proceedings of the IEEE Region 10 Conference.
Chang, C., W. Liu, et al. (2001). Image retrieval based on region shape similarity. Storage and Retrieval for Media Databases 2001, San Jose, CA, USA, SPIE.
Chen, G. and T. D. Bui (1999). 'Invariant Fourier-wavelet descriptor for pattern recognition.' Pattern Recognition 32(7): 1083-1088.
Chuang, G. C. H. and C. C. J. Kuo (1996). 'Wavelet descriptor of planar curves: theory and applications.' Image Processing, IEEE Transactions on 5(1): 56-70.
Ding, X., W. Kong, et al. (1999). Image Retrieval Using Schwarz Representation of One-Dimensional Feature. Visual Information and Information Systems: 654-654.
El Rube, I. A., M. Ahmed, et al. (2004). Coarse-to-fine multiscale affine invariant shape matching and classification. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on.
Hui-Min, Z., W. Zhong, et al. (2004). Locating the starting point of closed contour based on half-axes-angle. Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on.
Khalil, M. I. and M. M. Bayoumi (2001). 'A dyadic wavelet affine invariant function for 2D shape recognition.' Pattern Analysis and Machine Intelligence, IEEE Transactions on 23(10): 1152-1164.
Khalil, M. I. and M. M. Bayoumi (2002). 'Affine invariants for object recognition using the wavelet transform.' Pattern Recognition Letters 23(1-3): 57-72.
King-Chu, H. (2000). 'The generalized uniqueness wavelet descriptor for planar closed curves.' Image Processing, IEEE Transactions on 9(5): 834-845.
Kith, K. and E.-h. Zahzah (2004). Discrete Wavelet Descriptor for 2D Shape. Proceedings of the Third International Conference on Image and Graphics, IEEE Computer Society.
Kliot, M. and E. Rivlin (1998). Invariant-Based Shape Retrieval in Pictorial Databases. Computer Vision — ECCV'98: 491.
Kpalma, K. (2007). An Overview of Advances of Pattern Recognition Systems in Computer Vision, HAL - CCSD.
Lam, L., S. W. Lee, et al. (1992). 'Thinning methodologies-a comprehensive survey.' Pattern Analysis and Machine Intelligence, IEEE Transactions on 14(9): 869-885.
Li, J. and C.-C. J. Kuo (1996). Automatic target-shape recognition via deformable wavelet templates, SPIE.
Lin, W.-S. and C.-H. Fang (2007). 'Synthesized affine invariant function for 2D shape recognition.' Pattern Recogn. 40(7): 1921-1928.
Lin, W. S. and C. H. Fang (2009). 'Lossless parameterisation of image contour for shape recognition.' Computer Vision, IET 3(1): 36-46.
Ma, J., C.-K. Wu, et al. (1986). 'A fast shape descriptor.' Comput. Vision Graph. Image Process. 34(3): 282-291.
Mallat, S. (1991). 'Zero-crossings of a wavelet transform.' Information Theory, IEEE Transactions on 37(4): 1019-1033.
Mallat, S. (1992). 'Characterization of signals from multiscale edges.' IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7): 710.
Mallat, S. G. (1989). 'A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.' IEEE Trans. Pattern Anal. Mach. Intell. 11(7): 674-693.
Medioni, G. and Y. Yasumoto (1986). Corner detection and curve representation using cubic B-splines. Robotics and Automation. Proceedings. 1986 IEEE International Conference on.
Mingqiang, Y., K. Kidiyo, et al. (2008). A Survey of Shape Feature Extraction Techniques. Pattern Recognition. P.-Y. Yin, IN-TECH: 626.
Mokhtarian, F. and A. Mackworth (1986). 'Scale-based description and recognition of planar curves and two-dimensional objects.' IEEE Trans. Pattern Anal. Mach. Intell. 8(1): 34-43.
Mokhtarian, F. and A. K. Mackworth (1992). A theory of multiscale, curvature-based shape representation for planar curves. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 14: 789-805.
Paulik, M. J. and Y. D. Wang (1998). A multiwavelet model for 2D object analysis and classification. Circuits and Systems, 1998. Proceedings. 1998 Midwest Symposium on.
Persoon, E. and K.-S. Fu (1986). 'Shape Discrimination Using Fourier Descriptors.' Pattern Analysis and Machine Intelligence, IEEE Transactions on PAMI-8(3): 388-397.
Peura, M. and J. Iivarinen (1997). Efficiency of simple shape descriptors, World Scientific.
Sako, Y. and K. Fujimura (2000). 'Shape similarity by homotopic deformation.' The Visual Computer 16(1): 47-61.
Shen, D., W.-h. Wong, et al. (1999). 'Affine-invariant image retrieval by correspondence matching of shapes.' Image and Vision Computing 17(7): 489-499.
Shensa, M. J. (1992). 'The discrete wavelet transform: wedding the a trous and Mallat algorithms.' Signal Processing, IEEE Transactions on 40(10): 2464-2482.
Smith, L. (2002). A tutorial on Principal Components Analysis.
Squire, D. M. G. (2000). 'Invariance Signatures: Characterizing contours by their departures from invariance.' Computer Vision and Image Understanding 77(3): 284.
Tieng, Q. M. and W. W. Boles (1994). Object recognition using an affine invariant wavelet representation. Intelligent Information Systems,1994. Proceedings of the 1994 Second Australian and New Zealand Conference on.
Tieng, Q. M. and W. W. Boles (1995). 'An application of wavelet-based affine-invariant representation.' Pattern Recognition Letters 16(12): 1287-1296.
Tieng, Q. M. and W. W. Boles (1997). 'Recognition of 2D Object Contours Using the Wavelet Transform Zero-Crossing Representation.' IEEE Trans. Pattern Anal. Mach. Intell. 19(8): 910-916.
Wang, Z., Z. Chi, et al. (2000). Leaf Image Retrieval with Shape Features. Advances in Visual Information Systems: 41-52.
Wunsch, P. and A. F. Laine (1995). 'Wavelet descriptors for multiresolution recognition of handprinted characters.' Pattern Recognition 28(8): 1237-1249.
Yang, H. S., S. U. Lee, et al. (1998). 'Recognition of 2D Object Contours Using Starting-Point-Independent Wavelet Coefficient Matching.' Journal of Visual Communication and Image Representation 9(2): 171-181.
Zhang, D. and G. Lu (2004). 'Review of shape representation and description techniques.' Pattern Recognition 37(1): 1-19.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42515-
dc.description.abstract仿射不變函數對平移、旋轉、縮放和切變等仿射轉換具有不變性,是圖形辨識的必要技術之一,「小波合成不變函數」用「合成特徵訊號」套入仿射轉換模型,因而達到保存全部輪廓資訊的目的,使圖形辨識正確率大幅提昇。「小波合成不變函數」可以分辨輪廓的細部資訊,但是也會把起始點的變動當作輪廓變異訊號,因此如何使一個輪廓對映到唯一的「小波合成不變函數」曲線就是本研究的核心課題。本論文提出「框內自然定點法」用以決定輪廓的唯一起始點,該法結合「自然軸定點」的唯一性、圖形骨架化的不變性、和區域內「最遠距離法」的準確性,本論文藉由數個實驗分析和驗證「框內自然定點法」的可用性,並且對照既有的起始點決定法,確認「框內自然定點法」在大部份情況下都可以達成決定唯一起始點的目標。zh_TW
dc.description.abstractAffine invariant function (AIF) which is independent of affine transformations such as rotation, translation, scaling, and skewing, is a useful tool of shape recognition. Synthesized Affine Invariant Function (SAIF) which receives synthesized feature signals to determine the parametric curve features no information loss in representing the shape for recognition. While SAIF can represent the detailed contour signals, it is very sensitive to the starting point of the contour signal. By taking the advantages of the uniqueness of natural axis, the invariance of contour skeletonization, and the localization furthest centroid distance of contour, this thesis proposes the constrained natural axis method. The constrained natural axis under almost all conditions can determine a unique starting point on the contour; in turn the SAIF curve refers to the starting point is unique. That makes shape recognition based on SAIF practical and useful. Experimental results show and confirm the feasibility of the innovative method.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:15:15Z (GMT). No. of bitstreams: 1
ntu-98-R96921006-1.pdf: 1397989 bytes, checksum: a3496b74021fe86f31bcc2ed7f4acd7c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents合成仿射不變函數之起點不變性與平面圖形辨識之研究 I
誌謝 II
中文摘要 III
Abstract IV
內容大綱 V
圖目錄 VIII
表目錄 X
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機與貢獻 3
1.3 論文架構 4
第2章 合成仿射不變函數 5
2.1 仿射不變函數簡介 5
2.2 仿射轉換與仿射不變量 8
2.3 合成仿射不變函數 10
2.4 小波合成仿射不變函數 11
2.4.1 小波合成特徵訊號 11
2.4.2 小波合成仿射不變函數的演算式 14
2.5 餘弦合成仿射不變函數 16
2.5.1 餘弦合成特徵訊號 16
2.5.2 餘弦合成特徵訊號演算式 18
2.6 組合權重向量的類型 20
第3章:合成仿射不變函數的分析 22
3.1 分析目的 22
3.2 多重解析度分析 25
3.3 章節總結 33
第4章:起始點的不變性研究 34
4.1 起始點的影響 34
4.2 文獻回顧 35
4.3 形狀描述子 37
4.3.1 有效率的形狀描述子 38
4.3.2 形狀簽名 (Shape signature) 40
4.3.3 不變量 (invariants) 40
4.3.4 不變量簽名法 (invariant signature) 41
4.4 固定起始點法 43
4.4.1 最遠(最近)距離法(Furthest/Nearest Distance) 44
4.4.2 最大(最小)曲率法(Maximum/Minimum Curvature) 46
4.4.3 主軸定點 (Principal Axis) 50
4.4.4 自然軸定點(The Natural Axis) 52
4.5 框內自然定點法 (Skeleton Constrained Natural Axis) 54
4.5.1 自然軸定點法 (Natural Axes) 57
4.5.2 骨架定點法 (skeletonization) 58
4.5.2.1 H-M轉換 58
4.5.2.2 細化 59
4.5.3 最遠距離簽名法 (Furthest Distance) 61
第五章:實驗結果 62
5.1 實驗圖樣及分類依據 62
5.1.1 對稱性及對稱軸數目 64
5.1.2 輪廓協方差矩陣是否為常態分佈 64
5.2 測量標準 66
5.2.1 均方根誤差(Root Mean Square errors(RMS)) 66
5.2.2 相似度(Similarity rate) 66
5.3 實驗一:仿射轉換下的定點比較 68
5.3.1 實驗樣本 68
5.3.2 實驗分析 69
實驗5-1:平移均方根誤差累積直方圖 70
實驗5-2:旋轉均方根誤差累積直方圖 72
實驗5-3:縮放均方根誤差累積直方圖 74
實驗5-4:切變均方根誤差累積直方圖 76
5.3.3 歸納實驗結果 78
5.4 實驗二:仿射轉換下的辨識率 80
5.4.1 實驗樣本 80
5.4.2 實驗分析 81
5.5 實驗討論 82
第6章:結論與展望 84
6.1 研究總結 84
6.2 未來展望 85
附錄1 86
參考資料 89
dc.language.isozh-TW
dc.subject仿射不變函數zh_TW
dc.subject小波分析zh_TW
dc.subject圖形辨識zh_TW
dc.subject框內自然定點法zh_TW
dc.subjectconstrained natural axisen
dc.subjectwavelet analysisen
dc.subjectaffine invariant functionen
dc.subjectShape recognitionen
dc.title合成仿射不變函數之起點不變性與平面圖形辨識之研究zh_TW
dc.title2D Shape Recognition Using Synthesized Affine Invariant Function with Starting Point Invarianceen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾鴻源,許新添,邱榮輝
dc.subject.keyword圖形辨識,仿射不變函數,框內自然定點法,小波分析,zh_TW
dc.subject.keywordShape recognition,affine invariant function,constrained natural axis,wavelet analysis,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved