Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42497
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorHsueh-Chien Chengen
dc.contributor.author鄭學謙zh_TW
dc.date.accessioned2021-06-15T01:14:53Z-
dc.date.available2011-08-04
dc.date.copyright2009-08-04
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation[1] J. H. Blackstone, D. T. Phillips, and G. L. Hogg, “A state-of-the-art survey of
dispatching rules for manufacturing job shop operations,” International Journal
of Production Research, vol. 20, no. 1, pp. 27–45, 1982.
[2] D. C. Carroll, “Heuristic sequencing of single and multiple component jobs,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1965.
[3] A. P. J. Vepsalainen and T. E. Morton, “Priority rules for job shops with
weighted tardiness costs,” Management Science, vol. 33, no. 8, pp. 1035–1047,
1987.
[4] J. H. Chen, L. C. Fu, M. H. Lin, and A. C. Huang, “Petri-net and GA-based
approach to modeling, scheduling, andperformance evaluation for wafer fabrication,”
IEEE Transactions on Robotics and Automation, vol. 17, no. 5, pp.
619–636, 2001.
[5] T. C. Chiang and L. C. Fu, “Multiobjective job shop scheduling using genetic algorithm
with cyclic fitness assignment,” in Proceedings of the IEEE Conference
on Evolutionary Computation, Vancouver, Canada, July 2006, pp. 3266–3273.
[6] H. S. Min and Y. Yih, “Selection of dispatching rules on multiple dispatching
decision points in real-time scheduling of a semiconductor wafer fabrication
system,” International Journal of Production Research, vol. 41, no. 16, pp.
3921–3941, 2003.
[7] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic
algorithms,” in Proceedings of the International Conference on Genetic Algo-
rithms, Pittsburgh, PA, USA, July 1985, pp. 93–100.
[8] D. F. Jones, S. K. Mirrazavi, and M. Tamiz, “Multi-objective meta-heuristics:
An overview of the current state-of-the-art,” European Journal of Operational
Research, vol. 137, no. 1, pp. 1–9, 2002.
[9] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization,” in Proceedings of the
International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA,
June 1993, pp. 416–423.
[10] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm
for multiobjective optimization,” in Proceedings of the IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational Intel-
ligence, Orlando, FL, USA, June 1994, pp. 82–87.
[11] J. D. Knowles and D.W. Corne, “Approximating the nondominated front using
the Pareto archived evolution strategy,” Evolutionary Computation, vol. 8, pp.
149–172, 2000.
[12] D.W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “PESA-II: Regionbased
selection in evolutionary multiobjective optimization,” in Proceedings of
the Genetic and Evolutionary Computation Conference, San Francisco, CA,
USA, July 2001, pp. 283–290.
[13] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland,
Tech. Rep. 103, 2001.
[14] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms with dynamic
population size and local exploration for multiobjective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 5, no. 6, pp. 565–588, 2001.
[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.
[16] A. Toffolo and E. Benini, “Genetic diversity as an objective in multi-objective
evolutionary algorithms,” Evolutionary Computation, vol. 11, no. 2, pp. 151–
167, 2003.
[17] R. Graham, E. Lawler, J. Lenstra, and A. R. Kan, “Optimization and approximation
in deterministic sequencing and scheduling: a survey,” Annals of
Discrete Mathematics, vol. 5, no. 2, pp. 287–326, 1979.
[18] H. Ishibuchi and T. Murata, “A multi-objective genetic local search algorithm
and itsapplication to flowshop scheduling,” IEEE Transactions on Systems,
Man and Cybernetics, Part C, vol. 28, no. 3, pp. 392–403, 1998.
[19] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic search and
local search in memetic algorithms for multiobjective permutation flowshop
scheduling,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2,
pp. 204–223, 2003.
[20] J. E. C. Arroyo and V. A. Armentano, “Genetic local search for multi-objective
flowshop scheduling problems,” European Journal of Operational Research, vol.
167, no. 3, pp. 717–738, 2005.
[21] T. Pasupathy, C. Rajendran, and R. K. Suresh, “A multi-objective genetic algorithm
for scheduling in flow shops to minimize the makespan and total flow
time of jobs,” The International Journal of Advanced Manufacturing Technol-
ogy, vol. 27, no. 7, pp. 804–815, 2006.
[22] D. Lei and Z. Wu, “Crowding-measure-based multiobjective evolutionary algorithm
for job shop scheduling,” The International Journal of Advanced Manu-
facturing Technology, vol. 30, no. 1, pp. 112–117, 2006.
[23] B. Giffler and G. L. Thompson, “Algorithms for solving production scheduling
problems,” Operations Research, vol. 8, no. 4, pp. 487–503, 1960.
[24] P. C. Chang, J. C. Hsieh, and C. Y.Wang, “Adaptive multi-objective genetic algorithms
for scheduling of drilling operation in printed circuit board industry,”
Applied Soft Computing, vol. 7, no. 3, pp. 800–806, 2007.
[25] I. Kacem, S. Hammadi, and P. Borne, “Approach by localization and multiobjective
evolutionary optimization for flexible job-shop scheduling problems,”
IEEE Transactions on Systems, Man and Cybernetics, Part C, vol. 32, no. 1,
pp. 1–13, 2002.
[26] W. J. Xia and Z. M. Wu, “An effective hybrid optimization approach for multiobjective
flexible job-shop scheduling problems,” Computers & Industrial En-
gineering, vol. 48, no. 2, pp. 409–425, 2005.
[27] J. Gao, L. Y. Sun, and M. Gen, “A hybrid genetic and variable neighborhood
descent algorithm for flexible job shop scheduling problems,” Computers &
Operations Research, vol. 35, no. 9, pp. 2892–2907, 2008.
[28] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems,” Computers & Industrial
Engineering, vol. 54, no. 3, pp. 453–473, 2008.
[29] J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck procedure for job
shop scheduling,” Management Science, vol. 34, no. 3, pp. 391–401, 1988.
[30] S. Dauzere-Peres and J. B. Lasserre, “A modified shifting bottleneck procedure
for job-shop scheduling,” International Journal of Production Research, vol. 31,
no. 4, pp. 923–932, 1993.
[31] E. Balas, J. K. Lenstra, and A. Vazacopoulos, “The one-machine problem with
delayed precedence constraints and its use in job-shop scheduling,” Management
Science, vol. 41, no. 1, pp. 94–109, 1995.
[32] U. Dorndorf and E. Pesch, “Evolution based learning in a job-shop scheduling
environment,” Computers & Operations Research, vol. 22, no. 1, pp. 25–40,
1995.
[33] H. Aytug, K. Kempf, and R. Uzsoy, “Measures of subproblem criticality in
decomposition algorithms for shop scheduling,” International Journal of Pro-
duction Research, vol. 41, no. 5, pp. 865–882, 2003.
[34] V. Osisek and H. Aytug, “Discovering subproblem prioritization rules for shifting
bottleneck algorithms,” Journal of Intelligent Manufacturing, vol. 15, no. 1,
pp. 55–67, 2004.
[35] J. Carlier, “The one-machine sequencing problem,” European Journal of Oper-
ational Research, vol. 11, no. 1, pp. 42–47, 1982.
[36] L. M¨onch, R. Schabacker, D. Pabst, and J. W. Fowler, “Genetic algorithmbased
subproblem solution procedures for a modified shifting bottleneck heuristic
for complex job shops,” European Journal of Operational Research, vol. 177,
no. 3, pp. 2100–2118, 2007.
[37] P. Ivens and M. Lambrecht, “Extending the shifting bottleneck procedure to
real-life applications,” European Journal of Operational Research, vol. 90, no. 2,
pp. 252–268, 1996.
[38] E. Demirkol, S. Mehta, and R. Uzsoy, “A computational study of shifting bottleneck
procedures for shop scheduling problems,” Journal of Heuristics, vol. 3,
no. 2, pp. 111–137, 1997.
[39] M. Pinedo and M. Singer, “A shifting bottleneck heuristic for minimizing the
total weighted tardiness in a job shop,” Naval Research Logistics, vol. 46, no. 1,
pp. 1–17, 1999.
[40] S. J. Mason, J. W. Fowler, and W. M. Carlyle, “A modified shifting bottleneck
heuristic for minimizing total weighted tardiness in complex job shops,” Journal
of Scheduling, vol. 5, no. 3, pp. 247–262, 2002.
[41] K. Sourirajan and R. Uzsoy, “Hybrid decomposition heuristics for solving
large-scale scheduling problems in semiconductor wafer fabrication,” Journal
of Scheduling, vol. 10, no. 1, pp. 41–65, 2007.
[42] M. E. Pfund, H. Balasubramanian, J. W. Fowler, S. J. Mason, and O. Rose,
“A multi-criteria approach for scheduling semiconductor wafer fabrication facilities,”
Journal of Scheduling, vol. 11, no. 1, pp. 29–47, 2008.
[43] A. Upasani and R. Uzsoy, “Integrating a decomposition procedure with problem
reduction for factory scheduling with disruptions: a simulation study,”
International Journal of Production Research, vol. 46, no. 21, pp. 5883–5905,
2008.
[44] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Springer-Verlag New York Inc,
2007.
[45] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman, 1989.
[46] H. Beyer and H. Schwefel, “Evolution strategies–A comprehensive introduction,”
Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.
[47] M. Dorigo and T. St¨utzle, Ant colony optimization. The MIT press, 2004.
[48] J. Kennedy and R. C. Eberhart, Swarm Intelligence. Morgan Kaufmann, 2001.
[49] M. Mitchell, An Introduction to Genetic Algorithms. Bradford Books, 1996.
[50] J. Holland, Adaptation in Natural and Artificial Systems. The MIT Press,
1975.
[51] L. Booker, “Intelligent behavior as an adaptation to the task environment,”
Ph.D. dissertation, University of Michigan Ann Arbor, 1982.
[52] J. Baker, “Reducing bias and inefficiency in the selection algorithm,” in Pro-
ceedings of the International Conference on Genetic Algorithms and Their Ap-
plication, Cambridge, MA, USA, July 1987, pp. 14–21.
[53] I. M. Ovacik and R. Uzsoy, Decomposition Methods for Complex Factory
Scheduling Problems. Kluwer Academic Publishing, 1997.
[54] H. Fisher and G. L. Thompson, “Probabilistic learning combinations of local
job-shop scheduling rules,” Industrial Scheduling, pp. 225–251, 1963.
[55] D. Applegate and W. Cook, “A computational study of the job-shop scheduling
problem,” ORSA Journal on Computing, no. 3, pp. 149–156, 1991.
[56] S. Lawrence, “Resource constrained project scheduling: an experimental investigation
of heuristic scheduling techniques (Supplement),” Graduate School of
Industrial Administration, Carnegie-Mellon University, Tech. Rep., 1984.
[57] J. W. Barnes and J. B. Chambers, “Flexible job shop scheduling by tabu
search,” The University of Texas at Austin, Tech. Rep. ORP96-09, 1996.
[58] R. H. Myers and D. C. Montgomery, Response Surface Methodology. New
York: Wiley, 1995.
[59] J. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance assessment
of stochastic multiobjective optimizers,” Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, Tech. Rep. 214, 2005.
[60] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms
- A comparative case study,” in Proceedings of the International Con-
ference on Parallel Problem Solving from Nature, Amsterdam, Netherlands,
September 1998, pp. 292–304.
[61] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca,
“Performance assessment of multiobjective optimizers: An analysis and
review,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp.
117–132, 2003.
[62] W. J. Conover, Pratical Nonparametric Statistics. John Wiley and Sons, 1999.
[63] H. C. Cheng, T. C. Chiang, and L. C. Fu, “Multiobjective job shop scheduling
using memetic algorithm and shifting bottleneck procedure,” in Proceedings of
IEEE Symposium on Computational Intelligence in Scheduling, Nashville, TN,
USA, April 2009, pp. 15–21.
[64] B. Roy and B. Sussman, “Les probl`emes d’ordonnancement avec constraintes
disjonctives,” SEMA, Paris, Tech. Rep. 9, 1964.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42497-
dc.description.abstract這篇論文中研究如何解決多目標排程問題,由於基於週期時間(cycle time)與交期(due date)的目標時常互相抵觸,因此如何找出維持兩者間的平衡之排程對製造系統而 言是很重要的。我們提出了一個兩層的多目標瀰集演化演算法(memetic algorithm)及移動瓶頸法(shifting bottleneck procedure)來解決多目標排程問題,第一層使用瀰集演化演算法來搜尋初始排程,接著第二層使用移動瓶頸法中的重新最佳化程序,在我們提出的第一層演算法中使用的元件可以維持探索及利用間的平衡,在第二層中,重新最佳化程序使用了基於瀰集演化演算法的子問題解決法。透過在公開的測試資料上與一個最近的文獻比較的實驗結果驗證我們提出的方法是有效的,優秀的實驗結果指出我們提出的方法有實際應用到製造系統的潛力。zh_TW
dc.description.abstractIn this thesis, a multiobjective scheduling problem is addressed. Since cycle time-based objectives and due date-based objectives frequently contradicts with each other, a well-balanced schedule is important for manufacturing systems. A two-stage algorithm, multiobjective memetic algorithm and shifting bottleneck, MOMASB, is proposed to solve multiobjective scheduling problem. The first stage is a memetic algorithm, RMA, to generate initial schedules followed by the second stage, which is a re-optimization procedure inspired by SB. The components of the proposed RMA are carefully designed to maintain a balance between exploration and exploitation. In the second stage, the re-optimization applys a memetic algorithm-based subproblem, SSPMA. Experimental results compared with a recent approach in the literature show the effectiveness of the proposed MOMASB. The promising results indicate the potential of MOMASB to be applied to practical use.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:14:53Z (GMT). No. of bitstreams: 1
ntu-98-R96922066-1.pdf: 742352 bytes, checksum: 5f8439e183de0371033d9e631a055878 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Rule-based Dispatching . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Multiobjective Evolutionary Algorithm . . . . . . . . . . . . . 3
1.2.3 Multiobjective Evolutionary Scheduling . . . . . . . . . . . . . 5
1.2.4 Shifting Bottleneck Procedure . . . . . . . . . . . . . . . . . . 6
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Preliminary 9
2.1 Multiobjective Optimization . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Multiobjective Optimization Problems (MOPs) . . . . . . . . 9
2.1.2 Existing Approaches to MOPs . . . . . . . . . . . . . . . . . . 10
2.2 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Multiobjective Evolutionary Algorithm . . . . . . . . . . . . . 17
2.3 Multiobjective Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Shifting Bottleneck Procedure . . . . . . . . . . . . . . . . . . . . . . 21
3 Multiobjective Memetic Algorithm and Shifting Bottleneck Proce-
dure (MOMASB) for Multiobjective Scheduling 23
3.1 Overview of MOMASB . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 First Stage: Initial Schedule Generation . . . . . . . . . . . . . . . . 25
3.2.1 Chromosome Encoding and Decoding . . . . . . . . . . . . . . 25
3.2.2 Genetic Algorithm Components . . . . . . . . . . . . . . . . . 28
3.2.3 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Second Stage: Schedule Re-optimization . . . . . . . . . . . . . . . . 35
3.3.1 Bottleneck Selection . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Subproblem Formulation . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Memetic Algorithm-based Subproblem Solution Procedure . . 40
3.3.4 Best Schedule Selection . . . . . . . . . . . . . . . . . . . . . . 45
3.3.5 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Experiments and Results 47
4.1 Description of Problem Addressed . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Concerned objectives . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Benchmark Instances and Algorithm . . . . . . . . . . . . . . . . . . 48
4.2.1 Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Benchmark Algorithm . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 The Proposed MOMASB . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Benchmark Algorithm . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Performance Assessment . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5 Conclusions and Future Work 64
Appendix A | |
Notation 66
Appendix B Disjunctive Graph Representation 67
Reference 69
dc.language.isoen
dc.subject瓶頸飄移法zh_TW
dc.subject生產排程zh_TW
dc.subject多目標最佳化zh_TW
dc.subject演化式演算法zh_TW
dc.subjectProduction schedulingen
dc.subjectShifting bottlenecken
dc.subjectEvolutionary algorithmen
dc.subjectMultiobjective optimizationen
dc.title使用多目標演化演算法及移動瓶頸法之多目標排程zh_TW
dc.titleMultiobjective Scheduling by Multiobjective Evolutionary Algorithm and Shifting Bottleneck Procedureen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正剛,張時中,曹承礎,蔣宗哲
dc.subject.keyword生產排程,多目標最佳化,演化式演算法,瓶頸飄移法,zh_TW
dc.subject.keywordProduction scheduling,Multiobjective optimization,Evolutionary algorithm,Shifting bottleneck,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
724.95 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved